Skip to main content

Advertisement

Log in

Characterization of exopolysaccharides produced by seven biofilm-forming cyanobacterial strains for biotechnological applications

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The molecular identification of seven biofilm-forming cyanobacteria and the characterization of their exopolysaccharides were made and considered in terms of potential biotechnological applications. The studied strains were isolated from phototrophic biofilms taken from various Italian sites including a wastewater treatment plant, an eroded soil, and a brackish lagoon. The polysaccharides were characterized by use of ion exchange chromatography, circular dichroism, and cytochemical stains. All strains produced exopolysaccharides with differing ratios of hydrophobic and hydrophilic moieties depending on the species, the polysaccharide fraction (i.e., whether capsular or released), and the ambient conditions. It was shown that the anionic nature of the exopolysaccharides was due to the presence of carboxylic and sulfated groups and is likely the main characteristic with industrial applicability. Potential biotechnological applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barranguet C, Van Beuseom SAM, Veuger B, Neu TR, Manders EMM, Sinke JJ, Admiraal W (2004) Studying undisturbed autotrophic biofilms: still a technical challenge. Aquat Microb Ecol 34:1–9

    Article  Google Scholar 

  • Barranguet C, Veuger B, van Beusekom SAM, Marvan P, Sinke JJ, Admiraal W (2005) Divergent composition of algal–bacterial biofilms developing under various external factors. Eur J Phycol 40:1–8

    Article  CAS  Google Scholar 

  • Battin TJ, Kaplan L, Newbold JD, Hansen CME (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosm. Nature 426:239–4332

    Article  Google Scholar 

  • Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscape: new paths to biofilm research. Nature 5:76–81

    CAS  Google Scholar 

  • Bellezza S, Albertano P, De Philippis R, Paradossi G (2005) Exopolysaccharides in cyanobacterial biofilms from Roman catacombs. Arch Hydrobiol, Algol Stud 117:117–132

    Google Scholar 

  • Bellezza S, De Philippis R, Paradossi G, Albertano P (2006) Exopolysaccharides of two cyanobacterial strains from Roman hypogea. Geomicrobiol J 23:301–310

    Article  CAS  Google Scholar 

  • Bruno L, Billi D, Bellezza S, Albertano P (2009) Cytomorphological and genetic characterization of troglobitic Leptolyngbya strains isolated from Roman hypogea. Appl Environ Microbiol 75:608–617

    Article  PubMed  CAS  Google Scholar 

  • Bruno L, Di Pippo F, Antonaroli S, Gismondi A, Valentini C, Albertano P (2012) Characterization of biofilm-forming cyanobacteria for biomass and lipid production. J Appl Microbiol 113:1052–1064

    Article  PubMed  CAS  Google Scholar 

  • Cesaro A, Liut G, Bertocchi C, Navarini L, Urbani R (1990) Physico-chemical properties of the exocellular polysaccharide from Cyanospira capsulata. Int J Biol Macromol 12:79–84

    Article  PubMed  CAS  Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109:1674–1684

    Article  PubMed  CAS  Google Scholar 

  • Congestri R, Di Pippo F, De Philippis R, Paradossi G, Albertano P (2006) Seasonal succession of phototrophic biofilms in an Italian wastewater treatment plant: biovolume, spatial structure and exopolysaccharides. Aquat Microb Ecol 45:301–312

    Article  Google Scholar 

  • De Philippis R, Micheletti E (2009) Heavy metal removal with exopolysaccharide-producing cyanobacteria. In: Wang LK, Chen JP, Hung YT, Shammas NK (eds) Heavy metals in the environment CRC. Boca Raton, Fl, pp 89–122

    Google Scholar 

  • De Philippis R, Vincenzini M (2003) Outermost polysaccharidic investments of cyanobacteria: nature, significance and possible applications. Recent Res Dev Microbiol 7:13–22

    Google Scholar 

  • De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708

    Article  PubMed  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Google Scholar 

  • Decho AW, Visscher PT, Reid RP (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr Palaeocl 219:71–86

    Article  Google Scholar 

  • Di Pippo F, Bohn A, Congestri R, De Philippis R, Albertano P (2009) Capsular polysaccharides of cultured phototrophic biofilms. Biofouling 25:495–504

    Article  PubMed  Google Scholar 

  • Di Pippo F, Bohn A, Cavalieri F, Albertano P (2011) 1H-NMR analysis of water mobility in cultured phototrophic biofilms. Biofouling 27:327–336

    Google Scholar 

  • Di Pippo F, Ellwood NTW, Guzzon A, Siliato L, Micheletti E, De Philippis R, Albertano PB (2012) Effect of light and temperature on biomass, photosynthesis and capsular polysaccharides in cultured phototrophic biofilms. J Appl Phycol 24:211–220

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 38:350–356

    Article  Google Scholar 

  • Ellwood NTW, Di Pippo F, Albertano P (2012) Phosphatase activities of cultured biofilms. Water Res 46:378–386

    Article  PubMed  CAS  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nature Rev Microbiol 8:623–633

    CAS  Google Scholar 

  • Guzzon A, Congestri R, Albertano P (2005) Light-induced changes in photosynthesis and structure of cyanobacterial cultured biofilms from an Italian wastewater treatment plant. Arch Hybrobiol, Algol Stud 117:223–238

    Article  Google Scholar 

  • Helm RF, Potts M (2012) Extracellular matrix (ECM). In: Whitton BA (ed) Ecology of cyanobacteria II—their diversity in Space and Time. Springer, Dordrecht, pp 461–480

    Chapter  Google Scholar 

  • Huang Z, Liu Y, Paulsen BS, Klaveness D (1998) Studies on polysaccharides from three edible species of Nostoc (Cyanobacteria) with different colony morphologies: comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures. J Phycol 34:962–968

    Article  CAS  Google Scholar 

  • Kühl M, Glud RN, Ploug H, Ramsing NB (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J Phycol 32:799–812

    Article  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Langenhove HV (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol Rev 28:371–380

    Article  CAS  Google Scholar 

  • Li P, Harding SE, Liu Z (2001) Cyanobacterial exopolysaccharides: their nature and potential biotechnological application. Biotech Genet Eng Rev 18:375–403

    Article  CAS  Google Scholar 

  • Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Env 75:91–97

    Article  Google Scholar 

  • Magni P, Micheletti S, Casu D, Floris A, Giordani G, Petrov A, De Falco G, Castelli A (2005) Relationships between chemical characteristics of sediments and macrofaunal communities in the Cabras lagoon (western Mediterranean, Italy). Hydrobiologia 550:109–115

    Article  Google Scholar 

  • Mancuso Nichols CA, Guezennec J, Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar Biotechnol 7:253–271

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Micheletti E, Pereira S, Mannelli F, Moradas-Ferreira P, Tamagnini P, De Philippis R (2008) Sheathless mutant of cyanobacterium Gloeothece sp. strain PCC 6909 with increased capacity to remove copper ions from aqueous solutions. Appl Environ Microbiol 74:2797–2804

    Article  PubMed  CAS  Google Scholar 

  • Moreno J, Vargas MA, Olivares H, Rivas J, Guerrero GM (1998) Exopolysaccharide production by the cyanobacterium Anabaena sp. ATCC 33047 in batch and continuous culture. J Biotechnol 60:175–182

    Article  CAS  Google Scholar 

  • Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Pytochemistry 52:639–647

    Article  CAS  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3333

    PubMed  Google Scholar 

  • Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102:143–152

    Article  PubMed  CAS  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  PubMed  CAS  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490

    Article  PubMed  CAS  Google Scholar 

  • Rees DA (1972) Polysaccharide gels: a molecular view. Chem Ind 19:630–636

    Google Scholar 

  • Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbur J, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Rossi F, Micheletti E, Bruno L, Adhikary SP, Albertano P, De Philippis R (2012) Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 28:215–224

    Google Scholar 

  • Schaeler D, Krylov VS (2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotox Env Safety 45:208–227

    Article  Google Scholar 

  • Staats N, Stal LJ, de Winder B, Mur LR (2000) Oxygenic photosynthesis as a driving process in exopolysaccharide production in benthic diatoms. Mar Ecol Prog Ser 193:261–269

    Article  CAS  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP_Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Vincenzini M, De Philippis R, Sili C, Materassi R (1990) Studies on exopolysaccharide release by diazotrophic batch cultures of Cyanospira capsulata. Appl Microbiol Biotech 34:392–396

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Land-water interfaces: attached microorganisms, littoral algae, and zooplancton. In: Limnology: lake and river ecosystems. Academic, San Diego, pp 577-623

  • Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellulr polymeric substances? In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances—characterization, structure and function. Springer Verlag, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Wolfstein K, Stal LJ (2002) Production of extracellular polymeric substances (EPS) by benthic diatoms: effect of irradiance and temperature. Mar Ecol Prog Ser 236:13–22

    Article  Google Scholar 

  • Wolk CP, Ernst A, Elhai J (1994) Heterocyst metabolism and development. In: Bryant DA (ed) The molecular biology of cyanobacteria. Springer, Berlin, pp 769–823

    Chapter  Google Scholar 

  • Zhang X, Hu Q, Sommerfeld M, Puruhito E, Chen Y (2010) Harvesting algal biomass for biofuels using ultrafiltration membranes. Biores Technol 101:5297–5304

    Article  CAS  Google Scholar 

  • Zheng W, Chen C, Cheng Q, Wang Y, Chu C (2006) Oral administration of exopolysaccharide from Aphanothece halophytica (Chroococcales) significantly inhibits influenza virus (H1N1)-induced pneumonia in mice. Int Immunopharmacol 6(7):1093–1099

    Google Scholar 

  • Zippel B, Neu TR (2005) Growth and structure of phototrophic biofilms under controlled light conditions. Water Sci Technol 52:203–209

    CAS  Google Scholar 

  • Zippel B, Rijstenbil J, Neu TR (2007) A flow-lane incubator for studying freshwater and marine phototrophic biofilms. J Microbiol Meth 70:336–345

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Elena Romano from the Centre of Advanced Microscopy (CAM), Department of Biology, University of Rome “Tor Vergata,” for her assistance in the use of the facility, Roberto Targa for his assistance in the composition of figures, and the anonymous reviewers for their constructive comments. This research was partly supported by CNR-IAMC, National Research Council, Institute for Coastal Marine Environment UO Oristano, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Di Pippo.

Additional information

This study is dedicated to the memory of Prof. Patrizia B. Albertano (1952–2012)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Pippo, F., Ellwood, N.T.W., Gismondi, A. et al. Characterization of exopolysaccharides produced by seven biofilm-forming cyanobacterial strains for biotechnological applications. J Appl Phycol 25, 1697–1708 (2013). https://doi.org/10.1007/s10811-013-0028-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0028-1

Keywords

Navigation