Skip to main content

Advertisement

Log in

Determination of microcystins in reservoirs of different basins in a semiarid area

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Intracellular benthic microcystins and microcystins dissolved in water were detected in seven reservoirs in the Segura and Júcar basins located in a semiarid area in the province of Alicante (SE, Spain). Three varieties of intracellular benthic microcystins were identified: Mc-LR, Mc-RR and Mc-YR. Generally, all the microcystin varieties were present in the same reservoir and Mc-LR, considered the most powerful carcinogen known, predominated in most of them. Total microcystins absolute values per dry weight varied from 0.055 μg g−1 in the Elx reservoir in summer to 1.032 μg g−1 in the Crevillent reservoir in spring. Microcystins dissolved in water were not frequent in the reservoirs and were detected in Guadalest throughout the year, with values of between 0.041 and 0.069 ppb. In the Crevillent reservoir, dissolved microcystins were recorded only in summer with 0.163 ppb and were not recorded in the other reservoirs in any season. The cyanobacterial presence varied throughout the year, but no significant difference was seen for interseasonal microcystins production (ANOVA, p > 0.1). The principal component analysis (PCA) and Pearson's correlation coefficient results showed that physico-chemical parameters did not significantly account for both intracellular and dissolved microcystins occurrence. Moreover, the PCA indicated that the evolution of the concentrations of dissolved and intracellular microcystins followed different patterns. The fact that benthic organisms could release intracellular toxins into water may be due to stress caused by changes in water levels and by colonies’ senescence. However, they may also perform antigrazing and/or allelopatic functions. A significant difference was found for conductivity, phosphates and the presence of microcystins Mc-LR and Mc-Tot in the oligo- and eutrophic reservoirs (t test, p < 0.1 for all tests). In the reservoirs under study, microcystins production did not correlate with the high level of nutrients (t test, p > 0.1). In fact, microcystins were never detected in the more eutrophic reservoirs, e.g. Tibi and Beniarrés, both of which correspond to the River Júcar basin. This fact indicates a significant difference for conductivity and the presence of microcystins Mc-RR (t test, p < 0.1) between the River Segura basin and that of the River Júcar. The identification of microcystins in benthic cyanobacteria from the less eutrophic semiarid studied reservoirs showed that hepatotoxin production was restricted to neither planktonic species nor the physico-chemical parameters considered typical for the occurrence of cyanobacterial toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboal M, Prefasi M, Asencio AD (1996) The aquatic microphytes and macrophytes of the Transvase Tajo-Segura irrigation system, southeastern Spain. Hydrobiologia 340:101–107

    Article  Google Scholar 

  • Aboal M, Puig MA, Asencio AD (2005) Production of microcystins in calcareous mediterranean streams: the Alharabe river, Segura river basin in south-east Spain. J Appl Phycol 17:231–243

    Article  CAS  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater. 16th ed. pp 769

  • Azevedo SMFO, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181:441–446

    Article  PubMed  Google Scholar 

  • Baker P, Humpage A (1994) Toxicity associated with commonly occurring Cyanobacteria in surface waters of the Murray-Darling Basin, Australia. Aust J Mar Fresh Res 45:773–786

    Article  CAS  Google Scholar 

  • Ballot A, Ramm J, Rundberget T, Kaplan-Levy RN, Hadas O, Sukenik A, Wiedner C (2011) Occurrence of non-cylindrospermopsin-producing Aphanizomenon ovalisporum and Anabaena bergii in Lake Kinneret (Israel). J Plankton Res 33:1736–1746

    Article  CAS  Google Scholar 

  • Bláha L, Bláhová L, Kohoutek J, Adamovský O, Babica P, Maršálek B (2010) Temporal and spatial variability of cyanobacterial toxins microcystins in three interconnected freshwater reservoirs. J Serb Chem Soc 75:1303–1312

    Article  Google Scholar 

  • Bradt S, Villena MJ (2002) Detection of microcystins in the coastal lagoon La Albufera de Valencia. Spain by an enzyme linked immune sorbent assay (E.L.I.S.A.). Limnetica 20:187–196

    Google Scholar 

  • Brient L, Lengronne M, Bormans M, Fastner J (2008) Short communication: first occurrence of cylindrospermopsin in freshwater in France. Environ Toxicol 24:415–420

    Article  Google Scholar 

  • Brittain S, Mohamed ZA, Wang J, Lehmann VKB, Carmichael WW, Rinehart KL (2000) Isolation and characterization of microcystins from a River Nile strain of Oscillatoria tenuis Agardh ex Gomont. Toxicon 38:1759–1771

    Article  PubMed  CAS  Google Scholar 

  • Carmichael WW, Evans WR, Yin QQ, Bell P, Moczydlowski E (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb nov. Appl Environ Microbiol 63:3104–3110

    PubMed  CAS  Google Scholar 

  • Carmichael WW, Li R (2006) Cyanobacteria toxins in the Salton Sea. Saline Systems 2:5

    Article  PubMed  Google Scholar 

  • Carrasco D, Moreno E, Paniagua T, De Hoyos C, Wormer L, Sanchis D, Cirés S, Martín del Pozo D, Codd GA, Quesada A (2007) Anatoxin-a occurrence and potencial cyanobacterial anatoxin-a producers in Spanish reservoirs. J Phycol 43:1120–1125

    Article  CAS  Google Scholar 

  • Chen J, Xie P, Guo L, Zheng K, Ni L (2005) Tissue distribution and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in freshwater snail (Ballamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China. Environ Pollut 134:423–430

    Article  PubMed  CAS  Google Scholar 

  • Chorus J, Bartram J (1999) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. WHO-St Edmundsbury Press, Suffolk UK

    Book  Google Scholar 

  • Codd GA, Metcalf JS, Beattie KA (1999a) Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon 37:1181–1185

    Article  PubMed  CAS  Google Scholar 

  • Codd GA, Bell SG, Kaya K, Ward CJ, Beattie KA, Metcalf JS (1999b) Cyanobacterial toxins, exposure routes and human health. Eur J Phycol 34:405–415

    Article  Google Scholar 

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272

    Article  PubMed  CAS  Google Scholar 

  • Cook CM, Vardaka E, Lanaras T (2004) Toxic cyanobacteria in Greek freshwaters, 1987-2000: occurrence, toxicity, and impacts in the Mediterranean region. Acta Hydrochem Hydrobiol 32:107–124

    Article  CAS  Google Scholar 

  • Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725

    Article  CAS  Google Scholar 

  • Dow CS, Swoboda UK (2000) Cyanotoxins. In: Whitton BA, Potts M (eds) The ecology of Cyanobacteria. Kluwer Academic, Dordrecht, pp 613–632

    Google Scholar 

  • Duong TT, Le TPQ, Dao TS, Pflugmacher S, Rochelle-Newall E, Hoang TK, Vu TN, Ho CT, Dang DK (2012) Seasonal variation of cyanobacteria and microcystins in the Nui Coc Reservoir, Northern Vietnam. J Appl Phycol 24:1053–1065

    Article  CAS  Google Scholar 

  • Falconer IR (1994) Health implications of cyanobacterial (blue-green algae) toxins. In: Steffensen DA, Nicholson BC (eds) Toxic Cyanobacteria current status of research and management. In: Proceedings for an International Workshop, Adelaide, Australia

  • Falconer IR (2005) Cyanobacterial toxins in drinking water supplies: cylindrospermopsin and microcystins. CRC Press, Boca Ratón

    Google Scholar 

  • Fastner J, Rucker J, Stuken A, Preussel K, Nixdorf B, Chorus I, Kohler A, Wiedner C (2007) Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environ Toxicol 22:26–32

    Article  PubMed  CAS  Google Scholar 

  • Ferreira FMB, Soler JMF, Fidalgo ML, Fernandez-Vila P (2001) PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma-Lever reservoir (Douro River, northern Portugal). Toxicon 39:757–761

    Article  PubMed  CAS  Google Scholar 

  • Foss AJ, Phlips EJ, Yilmaz M, Chapman A (2012) Characterization of paralytic shellfish toxins from Lyngbya wollei dominated mats collected from two Florida springs. Harmful Algae 16:98–107

    Article  CAS  Google Scholar 

  • Francis G (1878) Poisonous Australian lake. Nature 18:11–12

    Article  Google Scholar 

  • Frazier KB, Colvin E, Styer G, Hullinger GR (1998) Microcystin toxicosis in cattle due to overgrowth of blue-green algae. Vet Hum Toxicol 40:23–24

    PubMed  CAS  Google Scholar 

  • Freitas de Magalhaes V, Soraes RM, Azevedo SMFO (2001) Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): ecological implication and human risk. Toxicon 39:1077–1085

    Article  Google Scholar 

  • Galvão HM, Reis MP, Valério E, Domingues RB, Costa C, Lourenço D (2008) Cyanobacteria blooms in natural waters in Southern Portugal, a water management perspective. Aquat Microb Ecol 53:129–140

    Article  Google Scholar 

  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta-Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105:121–139

    Article  Google Scholar 

  • Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Ann Rev Ecol Syst 30:51–81

    Article  Google Scholar 

  • Gjolme N, Utkilen H (1996) The extraction and the stability of microcystin-RR in different solvents. Phycologia 35:80–82

    Article  Google Scholar 

  • Gkelis S, Lanaras T, Sivonen S (2006) The presence of microcystins and other cyanobacterial bioactive peptides in aquatic fauna collected from Greek freshwaters. Aquat Toxicol 10:32–41

    Article  Google Scholar 

  • Hitzfeld BC, Lampert CS, Spaeth N, Mountfort D, Kaspar H, Dietrich (2000) Toxin production in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Toxicon 38:1731–1748

    Article  PubMed  CAS  Google Scholar 

  • Jang MH, Ha K, Lucas MC, Joo GJ, Takamura N (2004) Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish. Aquat Toxicol 68:51–59

    Article  PubMed  CAS  Google Scholar 

  • Kastovsky J, Hauer T, Mares J, Krautová M, Besta T, Komárek J, Desortová B, Hetesa J, Hindáková A, Houk V, Janecek E, Kopp R, Marvan P, Pumann P, Skácelová O, Zapomelova E (2010) A review of the alien and expansive species of freshwater cyanobacteria and algae in the Czech Republic. Biol Invasions 12:3599–3625

    Article  Google Scholar 

  • Kearns KD, Hunter MD (2000) Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environ Microbiol 2:291–297

    Article  PubMed  CAS  Google Scholar 

  • Li R, Carmichael WW, Brittain S, Eaglesham GK, Shaw GR, Mahakhant A, Noparatnaraporn N, Yongmanitchai W, Kaya K, Watanabe MM (2001) Isolation and identification of the cyanotoxin cylindrospermopsin and deoxycylindrospermopsin from a Thailand strain of Cylindrospermopsis raciborskii (Cyanobacteria). Toxicon 39:973–980

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo-Lacruz J, Vicente-Serrano SM, López-Moreno JI, Morán-Tejeda E, Zabalza J (2012) Recent trends in Iberian streamflows (1945–2005). J Hydrol 414–415:463–475

    Article  Google Scholar 

  • Lund L, Longaray M, Baptista P, Sarkis J, Monserrat JM (2011) Influence of a toxic Microcystis aeruginosa strain on glutathione synthesis and glutathione-S-transferase activity in common carp Cyprinus carpio (Teleostei: Cyprinidae). Arch Environ Contam Toxicol 60:319–326

    Article  Google Scholar 

  • Margalef R (1983) Limnologia. In: Limnología. Ediciones Omega SA, Barcelona, Spain

  • McElhiney J, Lawton LA, Leifert C (2001) Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure. Toxicon 39:1411–1420

    Article  PubMed  CAS  Google Scholar 

  • Meriluoto JAO, Ermsson JE, Harada KI, Dahlem AM, Sivonen K, Carmichael WW (1990) Internal surface reverse phase high-performance liquid chromatographic separation of the cyanobacterial peptide toxins microcystin-LR, -YR, -RR and nodulatin. J Chromatogr 509:390–395

    Article  PubMed  CAS  Google Scholar 

  • Metcalf JS, Codd GA (2012) Cyanotoxins. In: Whitton BA (ed) Ecology of Cyanobacteria II: their diversity in space and time. Springer, Berlin, pp 651–673

    Chapter  Google Scholar 

  • Mez K, Beattie KA, Codd GA, Hanselmann K, Hauser B, Naegeli H, Preisig HR (1997) Identification of microcystin in benthic cyanobacteria linked to cattle death in alpine pastures in Switzerland. Eur J Phycol 32:11–117

    Article  Google Scholar 

  • Mohamed ZA, Carmichael WW (2000) Seasonal variation in microcystin levels of River Nile water at Sohag city, Egypt. Ann Limnol 36:227–234

    Article  Google Scholar 

  • Mohamed ZA, El-Sharouny HM, Ali WS (2006) Microcystin production in benthic mats of cyanobacteria in the Nile river and irrigation canals, Egypt. Toxicon 47:584–590

    Article  PubMed  CAS  Google Scholar 

  • Naselli-Flores L, Barone R, Chorus I, Kurmayer R (2007) Toxic cyanobacterial blooms in Reservoirs under a semiarid Mediterranean climate: the magnification of a problem. Environ Toxicol 22:399–404

    Article  PubMed  CAS  Google Scholar 

  • Oliva-Teles L, Pereira E, Saker M, Vasconcelos V (2006) Time series forecasting of cyanobacteria blooms in the Crestuma Reservoir (Douro River, Portugal) using artificial neural networks. Environ Manage 38:227–237

    Article  Google Scholar 

  • Oliver RL, Ganf GG (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of Cyanobacteria: their diversity in time and space. Kluwer Academic, Dordrecht, pp 149–194

    Google Scholar 

  • Oudra B, Loudiki M, Sbiyyaa B, Martins R, Vasconcelos V, Namikoshi N (2001) Isolation, characterization and quantification of microcystins (heptapeptides hepatotoxins) in Microcystis aeruginosa dominated bloom of Lalla Takerkoust lakereservoir (Morocco). Toxicon 39:1375–1381

    Article  PubMed  CAS  Google Scholar 

  • Oudra B, Andaloussi MDE, Vasconcelos VM (2009) Identification and quantification of microcystins from a Nostoc muscorum bloom occurring in Ouka meden River (High-Atlas mountains of Marrakech, Morocco). Environ Monit Assess 149:437–444

    Article  PubMed  CAS  Google Scholar 

  • Owen RP (1994) Biological and economic significance of benthic cyanobacteria in two Scottish Highland Lochs. In: Codd GA, Jefferies TM, Keevil CW, Potter E (eds) Detection methods for cyanobacterial toxins. The Royal Society of Chemistry, Cambridge, pp 145–148

    Chapter  Google Scholar 

  • Prati M, Molteni M, Pomati F, Rossetti C, Bernardini G (2002) Biological effect of Planktothrix sp FP 1 cyanobacterial extract. Toxicon 40:267–272

    Article  PubMed  CAS  Google Scholar 

  • Pereira S, Saker M, Vale M, Vasconcelos VM (2009) Comparison of sensitivity of grasses (Lolium perenne L. and Festuca rubra L.) and lettuce (Lactuca sativa L.) exposed to water contaminated with microcystins. Bull Environ Contam Toxicol 83:81–84

    Article  PubMed  CAS  Google Scholar 

  • Robarts RD, Zohary T (1987) Temperature affects on photosynthetic capacity, respiration, and growth rates of bloom forming cyanobacteria. NZ J Mar Freshwat Res 21:391–399

    Article  CAS  Google Scholar 

  • Romo S, Fernández F, Ouahid Y, Barón-Solá A (2012) Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake. Environ Monit Assess 184:939–949

    Article  PubMed  CAS  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bratram J (eds) Toxic cyanobacteria in water. E and FN Spon, London, pp 39–111

    Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorous ratios favour dominance by blue-green algae in Lake phytoplankton. Science 221:669–671

    Article  PubMed  CAS  Google Scholar 

  • Stewart I, Seawright AA, Shaw GR (2008) Cyanobacterial poisoning in livestock, wild mammals and birds-an overview. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, pp 613–637

    Chapter  Google Scholar 

  • Tonk L, Visser PM, Christiansen G, Dittmann E, Snelder EOFM, Wiedner C, Mur LR, Huisman J (2005) The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Appl Environ Microbiol 71:5177–5181

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos VM (2006) Eutrophication, toxic cyanobacteria and cyanotoxins: when ecosystems cry for help. Limnetica 25:425–432

    Google Scholar 

  • Vasconcelos VM, Moraisa J, Valea M (2011) Microcystins and cyanobacteria trends in a 14 year monitoring of a temperate eutrophic reservoir (Aguieira, Portugal). J Environ Monit 13:668–672

    Article  PubMed  CAS  Google Scholar 

  • Willén T, Mattsson R (1997) Water-blooming and toxin producing cyanobacteria in Swedish fresh and brackish waters, 1981–1995. Hydrobiologia 353:181–192

    Article  Google Scholar 

  • Wood SA, Heath MW, Holland PT, Munday R, McGregor GB, Ryan KG (2010) Identification of a benthic microcystin producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand. Toxicon 55:897–903

    Article  PubMed  CAS  Google Scholar 

  • Xie LQ, Xie P, Li SX, Tang HJ, Liu H (2003) The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Res 37:2073–2080

    Article  PubMed  CAS  Google Scholar 

  • Zaccaroni A, Scaravelli D (2008) Toxicity of freshwater algal toxins to humans and animals. In: Evangelista V, Barsanti L, Gualtieri P (eds), Algal toxins, occurrence, effect and detection. Springer, Dordrecht, pp. 45–89

  • Zegura B, Straser A, Filipic M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins-a review. Mutat Res 727:16–41

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I sincerely wish to thank T Espinosa and R Valera for their help in the field and in the laboratory and H Warburton for her assistance with the English version of the text. I also wish to thank two anonymous reviewers and Editor in Chief, MA Borowitzka, for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia D. Asencio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asencio, A.D. Determination of microcystins in reservoirs of different basins in a semiarid area. J Appl Phycol 25, 1753–1762 (2013). https://doi.org/10.1007/s10811-013-0025-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0025-4

Keywords