Skip to main content
Log in

In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The contribution of protein fraction and proteolytic enzyme preparation to the in vitro cardioprotective, anti-diabetic and antioxidant activity of Palmaria palmata protein hydrolysates was investigated. Aqueous, alkaline and combined aqueous and alkaline P. palmata protein fractions were hydrolysed with the food-grade proteolytic preparations, Alcalase 2.4 L, Flavourzyme 500 L and Corolase PP. The hydrolysates had angiotensin converting enzyme (ACE) and dipeptidyl peptidase (DPP) IV inhibitory activity with IC50 values in the range 0.19–0.78 and 1.65–4.60 mg mL−1, respectively. The oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) values ranged from 45.17 to 467.54 and from 1.06 to 21.59 μmol trolox equivalents/g, respectively. Furthermore, hydrolysates (1 mg mL−1) were show to inhibit renin within the range 0–50 %. In general, Alcalase 2.4 L and Corolase PP hydrolysates of aqueous protein displayed the highest in vitro activity. The results indicate that protein fraction and enzyme preparation used have significant effects on in vitro biofunctional activity of the hydrolysates. This study demonstrates the potential of P. palmata protein hydrolysates as multifunctional functional food ingredients for the prevention/control of hypertension and type II diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boots JWP (2006) Protein hydrolysates enriched in peptides inhibiting DPP-IV and their use. PCT Patent Application WO/2006/068480

  • Cha SH, Ahn GN, Heo SJ, Kim KN, Lee KW, Song CB, Cho SK, Jeon YJ (2006) Screening of extracts from marine green and brown algae in Jeju for potential marine angiotensin-I converting enzyme (ACE) inhibitory activity. J Korean Soc Food Sci Nutr 35:307–314

    Article  Google Scholar 

  • Cian RE, Alaiz M, Vioque J, Drago SR (2012) Enzyme proteolysis enhanced extraction of ACE inhibitory and antioxidant compounds (peptides and polyphenols) from Porphyra columbina residual cake. J Appl Phycol. doi:10.1007/s10811-012-9913-2

  • Fatehi-Hassanabad Z, Chan CB, Furman BL (2010) Reactive oxygen species and endothelial function in diabetes. Eur J Pharmacol 636:8–17

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald C, Mora-Soler L, Gallagher E, O’Connor P, Prieto J, Soler-Vila A, Hayes M (2012) Isolation and characterization of bioactive pro-peptides with in vitro renin inhibitory activities from the macroalga Palmaria palmata. J Agric Food Chem 60:7421–7427

    Article  CAS  Google Scholar 

  • Fleurence J (2004) Seaweed proteins. In: Yada RY (ed) Proteins in food processing. Woodhead Publishing Limited, Cambridge, pp 197–213

    Chapter  Google Scholar 

  • Girgih AT, Udenigwe CC, Li H, Adebiyi AP, Aluko RE (2011) Kinetics of enzyme inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. JAOCS 88:1767–1774

    Article  CAS  Google Scholar 

  • Green BD, Gault VA, O’Harte FP, Flatt PF (2004) Structurally modified analogues of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) as future antidiabetic agents. Curr Pharm Des 10:3651–3662

    Article  PubMed  CAS  Google Scholar 

  • Harnedy PA, FitzGerald RJ (2011) Bioactive proteins, peptides and amino acids from macroalgae. J Phycol 47:218–232

    Article  CAS  Google Scholar 

  • Harnedy PA, FitzGerald RJ (2013) Extraction of protein from the macroalga Palmaria palmata. LET Food Sci Technol 51:375–382

    Article  CAS  Google Scholar 

  • He HL, Chen XL, Wu H, Sun CY, Zhang YZ, Zhou BC (2007) High throughput and rapid screening of marine protein hydrolysates enriched in peptides with angiotensin-I-converting enzyme inhibitory activity by capillary electrophoresis. Bioresour Technol 98:3499–3505

    Article  PubMed  CAS  Google Scholar 

  • Kalyankar P, Zhu Y, O’Keeffe M, O’Cuinn G, FitzGerald RJ (2013) Substrate specificity of glutamyl endopeptidase (GE): hydrolysis studies with a bovine α-casein preparation. Food Chem 136:501–512

    Article  PubMed  CAS  Google Scholar 

  • Kelman D, Posner EK, McDermid KJ, Tabandera NK, Wright PR, Wright AD (2012) Antioxidant activity of Hawaiian marine algae. Mar Drugs 10:403–416

    Article  PubMed  CAS  Google Scholar 

  • Kurtz TW, Pravenec M (2004) Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists: beyond the renin–angiotensin system. J Hypertens 22:2253–2261

    Article  PubMed  CAS  Google Scholar 

  • Lacroix IME, Li-Chan ECY (2012a) Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. Int Dairy J 25:97–102

    Article  CAS  Google Scholar 

  • Lacroix IME, Li-Chan ECY (2012b) Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. J Funct Foods 4:403–422

    Article  CAS  Google Scholar 

  • Lago RM, Singh PP, Nesto RW (2007) Diabetes and hypertension. Nat Clin Pract Endocrinol Metab 3:667–667

    Article  PubMed  Google Scholar 

  • Lee JM, You SG, Kim SM (2005) Functional activities of low molecular weight peptides purified from enzymatic hydrolysates of seaweeds. J Korean Soc Food Sci Nutr 34:1124–1129

    Article  CAS  Google Scholar 

  • Li H, Aluko RE (2010) Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. J Agric Food Chem 58:11471–11476

    Article  CAS  Google Scholar 

  • Li H, Prairie N, Udenigwe CC, Adebiyi AP, Tappia PS, Aukema HM, Jones PJ, Aluko RE (2011) Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. J Agric Food Chem 59:9854–9860

    Article  PubMed  CAS  Google Scholar 

  • Li-Chan EC, Hunag SL, Jao CL, Ho KP, Hsu KC (2012) Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J Agric Food Chem 60:973–978

    Article  PubMed  CAS  Google Scholar 

  • Meisel H, Walsh DJ, Murray BA, FitzGerald RJ (2006) ACE inhibibtory peptides. In: Mine Y, Shahidi F (eds) Nutraceutical proteins and peptides in health and disease, vol 4. CRC Press, Boca Raton, pp 269–315

    Google Scholar 

  • Mullally MM, O’Callaghan DM, FitzGerald RJ, Donnelly WJ, Dalton JP (1994) Proteolytic and peptidolytic activities in commercial pancreatic protease preparations and their relationship to some whey protein hydrolyzate characteristics. J Agric Food Chem 42:2973–2981

    Article  CAS  Google Scholar 

  • Murray BA, Walsh DJ, FitzGerald RJ (2004) Modification of the furanacryloyl-l-phenylalanylglycylglycine assay for determination of angiotensin-I-converting enzyme inhibitory activity. J Biochem Biophys Methods 59:127–137

    Article  PubMed  CAS  Google Scholar 

  • Nongonierma AB, FitzGerald RJ (2013) Dipeptidyl peptidase IV inhibitory and antioxidative properties of milk protein-derived dipeptides and hydrolysates. Peptides 39:157–163

    Article  PubMed  CAS  Google Scholar 

  • Norris R, Casey F, FitzGerald RJ, Shields D, Mooney C (2012) Predictive modelling of angiotensin converting enzyme inhibitory dipeptides. Food Chem 133:1349–1354

    Article  CAS  Google Scholar 

  • Papaharalambus CA, Griendling KK (2007) Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 17:48–54

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Hagino H (2005) Antihypertensive effect of oligopeptides derived from nori (Porphyra yezoensis) and Ala-Lys-Tyr-Ser-Tyr in rats. J Jap Soc Nutr Food Sci 58:177–184

    Article  CAS  Google Scholar 

  • Sato M, Hosokawa T, Yamaguchi T, Nakano T, Muramoto K, Kahara T, Funayamab K, Kobayashib A, Nakano T (2002a) Angiotensin I-converting enzyme inhibitory peptides derived from brown alga (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J Agric Food Chem 50:6245–6252

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Oba T, Yamaguchi T, Nakano T, Kahara T, Funayama K, Kobayashi A, Nakano T (2002b) Antihypertensive effects of hydrolysates of Wakame (Undaria pinnatifida) and their angiotensin I-converting enzyme inhibitory activity. Ann Nutr Metab 46:259–267

    Article  PubMed  CAS  Google Scholar 

  • Sentandreu MÁ, Toldrá F (2006) A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chem 97:546–554

    Article  CAS  Google Scholar 

  • Smyth M, FitzGerald RJ (1998) Relationship between some characteristics of WPC hydrolysates and the enzyme complement in commercially available proteinase preparations. Int Dairy J 8:819–827

    Article  CAS  Google Scholar 

  • Sowers JR (2004) Treatment of hypertension in patients with diabetes. Arch Intern Med 164:1850–1857

    Article  PubMed  CAS  Google Scholar 

  • Spellman D, McEvoy E, O’Cuinn G, FitzGerald RJ (2003) Proteinase and exopeptidase hydrolysis of whey protein: comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. Int Dairy J 13:447–453

    Article  CAS  Google Scholar 

  • Spellman D, Kenny P, O’Cuinn G, FitzGerald RJ (2005) Aggregation properties of whey protein hydrolysates generated with Bacillus licheniformis proteinase activities. J Agric Food Chem 53:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Suetsuna K (1998a) Purification and identification of angiotensin I-converting enzyme inhibitors from the red alga Porphyra yezoensis. J Mar Biotechnol 6:163–167

    PubMed  CAS  Google Scholar 

  • Suetsuna K (1998b) Separation and identification of angiotensin I-converting enzyme inhibitory peptides from peptic digest of Hizikia fusiformis protein. Nippon Suisan Gakk 64:862–866

    Article  CAS  Google Scholar 

  • Suetsuna K, Nakano T (2000) Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnatifida). J Nutr Biochem 11:450–454

    Article  PubMed  CAS  Google Scholar 

  • Tulipano G, Sibilia V, Caroli AM, Cocchi D (2011) Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides 32:835–838

    Article  PubMed  CAS  Google Scholar 

  • Uchida M, Ohshiba Y, Mogam O (2011) Novel dipeptidyl peptidase-4-inhibiting peptide derived from β-lactoglobulin. J Pharmacol Sci 117:63–66

    Article  PubMed  CAS  Google Scholar 

  • Udenigwe CC, Lin Y-S, Hou W-C, Aluko RE (2009) Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. J Funct Foods 1:199–207

    Article  Google Scholar 

  • Uenishi H, Kabuki T, Seto Y, Serizawa A, Nakajima H (2012) Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int Dairy J 22:24–30

    Article  CAS  Google Scholar 

  • Van Amerongen A, Beelen-Thomissen MJC, Van Zeeland-Wolbers LAM, Van Gilst WH, Buikema JH, Nelissen JWPM (2009) Egg protein hydrolysates. PCT Patent Application WO/2009/128713

  • Wang T, Jónsdóttir R, Kristinsson HG, Hreggvidsson GO, Jónsson JO, Thorkelsson G, Ólafsdóttir G (2010) Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT - Food Sci Technol 43:1387–1393

    Article  CAS  Google Scholar 

  • Wijesekara I, Kim SK (2010) Angiotensin-I-converting enzyme (ACE) Inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar Drugs 8:1080–1093

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project (Grant Aid Agreement No. MFFRI/07/01) was carried out under the Sea Change Strategy with the support of the Marine Institute and the Department of Agriculture, Food and the Marine, funded under the National Development Plan 2007–2013. The authors would like to acknowledge Dr. Anna Soler-Vila, NUI Galway for the freeze-dried P. palmata sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. FitzGerald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harnedy, P.A., FitzGerald, R.J. In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. J Appl Phycol 25, 1793–1803 (2013). https://doi.org/10.1007/s10811-013-0017-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0017-4

Keywords

Navigation