Skip to main content
Log in

On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The red seaweed dulse (Palmaria palmata) is one of the more popular seaweed species for human consumption in the Western world. With a documented historical use up to present days in Ireland, Brittany (France), Iceland, Maine (USA), and Nova Scotia (Canada), it has remained a snack, a food supplement, and an ingredient in various dishes. The trend towards more healthy and basic foodstuffs, together with an increasing interest among chefs for the seaweed cuisine, has posed the need for more quantitative knowledge about the chemical composition of dulse of relevance for human consumption. Here, we report on data for amino acid composition, fatty acid profile, vitamin K, iodine, kainic acid, inorganic arsenic, as well as for various heavy metals in samples from Denmark, Iceland, and Maine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Almela C, Algora S, Benito V, Clemente MJ, Devesa V, Suner MA, Velez D, Montoro R (2002) Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. J Agric Food Chem 50:918–923

    Article  PubMed  CAS  Google Scholar 

  • Arasaki S, Arasaki T (1983) Low calorie, high nutrition vegetables from the sea. Japan Publications Inc., Tokyo

    Google Scholar 

  • Bartie W, Madorin P, Ferland G (2001) Seaweed, vitamin K, and warfarin. Amer J Health Syst Pharm 58:2300

    Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algae. Anatomy, biochemistry, and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Article  Google Scholar 

  • Braverman LE (1994) Iodine and the thyroid—33 years of study. Thyroid 4:351–356

    Article  PubMed  CAS  Google Scholar 

  • Braune W, Guiry MD (2011) Seaweeds. A.R.G. Gartner, Ruggell

    Google Scholar 

  • Burtin P (2003) Nutritional value of seaweeds. Electron J Environ Agric Food Chem 2:498–503

    Google Scholar 

  • Channing DM, Young GT (1953) Amino acids and peptides. Part X. The nitrogenous constituents of some marine algae. J Chem Soc (London): 2481–2491

  • Clark RF, Williams SR, Nordt SP, Manoguerra AS (1999) A review of selected seafood poisonings. Undersea Hyperb Med 26:175–184

    PubMed  CAS  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    Article  PubMed  CAS  Google Scholar 

  • Colombo ML, Risè P, Giavarini F, De Angelis L, Galli C, Bolis CL (2006) Marine macroalgae as sources of polyunsaturated fatty acids. Plant Foods Human Nutr 61:67–72

    Article  CAS  Google Scholar 

  • Cooksley VG (2007) Seaweed. Nature’s secret balancing your metabolism, fighting disease, and revitalizing body & soul. New York: Stewart, Tabori & Chang

  • Coulson CB (1953) Amino acids of marine algae. Chem Ind (London): 971–972

  • Coyle JT (1983) Neurotoxic action of kainic acid. J Neurochem 41:1–11

    Article  PubMed  CAS  Google Scholar 

  • Cunanne SC (2005) Survival of the fattest. World Scientific, London

    Book  Google Scholar 

  • Cunnane SC, Stewart KM (2010) Human brain evolution. The influence of freshwater and marine food resources. Wiley, New Jersey

    Book  Google Scholar 

  • Dam H, Glavind J (1938) Vitamin K in the plant. Biochem J 32:485–487

    PubMed  CAS  Google Scholar 

  • Dawczynski C, Schäfer U, Leiterer M, Jahreis G (2007a) Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products. J Agric Food Chem 55:10470–10475

    Article  PubMed  CAS  Google Scholar 

  • Dawczynski C, Schubert R, Jahreis G (2007b) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899

    Article  CAS  Google Scholar 

  • Dillehay TD, Ramírez C, Pino M, Collins MB, Rossen J, Pino-Navarro JD (2008) Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320:84–786

    Article  Google Scholar 

  • DRI Report (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington DC, USA

  • Edwards MD, Holdt SL, Hynes S (2011) Algal eating habits of phycologists attending the ISAP Halifax Conference and members of the general public. J Appl Phycol 24:627–633

    Article  Google Scholar 

  • Erhart S, Cerier L (2001) Sea vegetable celebration. Tennessee Book, Summertown

    Google Scholar 

  • EU (2008) Commission Regulation (EC) No 629/2008 of 2 July 2008 amending regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union L173/6-9

  • FAO (2001) Human vitamin and mineral requirements. Report of a joint FAO/WHO expert consultation, Bangkok, Thailand. FAO, Rome

  • Feldmann J, John K, Pengprecha P (2000) Arsenic metabolism in seaweed-eating sheep from Northern Scotland. Fresenius J Anal Chem 368:116–121

    Article  PubMed  CAS  Google Scholar 

  • Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, Garcia-Bueno N, Jaouen P (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci Technol 27:57–61

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Galland-Irmouli AV, Fleurence J, Lamghari R, Luçon M, Rouxel C, Barbaroux O, Bronowicki JP, Villaume C, Guéant JL (1999) Nutritional value of proteins from edible seaweed Palmaria palmata (dulse). J Nutr Biochem 10:353–359

    Article  PubMed  CAS  Google Scholar 

  • Guiry MD (1978) A concensus and bibliography of Irish seaweeds. Bibl Phycol 44:1–287

    Google Scholar 

  • Hafting JT, Critchley AT, Scott MLC, Hubley A, Archibald AF (2012) On-land cultivation of functional seaweed products for human usage. J Appl Phycol 24:385–392

    Article  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed; functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Vaskovsky VE, Titlyanova TV (2002) Fatty acids of marine algae from the Pacific Coast of North California. Bot Mar 45:17–22

    Article  CAS  Google Scholar 

  • Kristjánsson L (1980) Íslenzkir Sjávarhættir I. Bókautgáfa Menningarsjóds, Reykjavík

    Google Scholar 

  • Laycock MV, Mclnnes AG, Morgan KC (1979) d-homocysteic acid in Palmaria palmata. Phytochem 18:1220

    Article  CAS  Google Scholar 

  • Laycock MV, de Freitas ASW, Wright JLC (1989) Glutamate agonists from marine algae. J Appl Phycol 1:1573–1576

    Article  Google Scholar 

  • Le Gall L, Pien S, Rusig AM (2004) Cultivation of Palmaria palmata (Palmariales, Rhodophyta) from isolated spores in semi-controlled conditions. Aquaculture 229:181–191

    Article  Google Scholar 

  • Lewis AAS (2007) Organic versus inorganic arsenic in herbal kelp supplements. Environ Health Perspect 115:A575

    Article  PubMed  Google Scholar 

  • Lothman EW, Collins RC (1981) Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathalogical correlates. Brain Res 218:299–318

    Article  PubMed  CAS  Google Scholar 

  • Lüning K (2008) Integrated macroalgae-oyster aquaculture on a North Sea island: seasonal productivity of the brown alga Laminaria saccharina and the red algae Palmaria palmata; Solieria chordalis, Gracilaria vermiculophylla, and the use of these seaweeds in human nutrition or as raw material for the cosmetics industry. 11th International Conference on Applied Phycology, Galway, Ireland. June 22–27

  • Mabeau S, Fleurence J (1993) Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4:103–107

    Article  CAS  Google Scholar 

  • MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543

    Article  PubMed  Google Scholar 

  • Maderia CJ (2007) The new seaweed cookbook. North Atlantic Books, Berkeley

    Google Scholar 

  • Mai K, Mercer JP, Donlon J (1994) Comparative studies on the nutrition of two species of abalone. Haliotis tuberculata L. and Haliotis discus Hannai Ino. II. Amino acid composition of abalone and six species of macroalgae with an assessment of their nutritional-value. Aquaculture 128:115–130

    Article  CAS  Google Scholar 

  • Martínez B, Viejo RM, Rico JM, Rødde RH, Faes VA, Oliveros J, Álvarez D (2006) Open sea cultivation of Palmaria palmata (Rhodophyta) on the northern Spanish coast. Aquaculture 254:376–387

    Article  Google Scholar 

  • Michanek G (1979) Seaweed resources for pharmaceutical use. In: Hoppe HA, Levring T, Tanaka Y (eds) Marine algae in pharmaceutical science. Walter de Gruyter, Berlin, pp 203–235

    Google Scholar 

  • Mishra VK, Temelli F, Ooraikul B, Shacklock PF, Craigie JS (1993) Lipids of the red alga, Palmaria palmata. Bot Mar 36:169–174

    Article  CAS  Google Scholar 

  • Morgan K, Wright J, Simpson F (1980) Review of chemical constituents of the red alga Palmaria palmata (dulse). Econ Bot 34:27–50

    Article  CAS  Google Scholar 

  • Mouritsen OG (2012a) The emerging science of gastrophysics and its application to the algal cuisine. Flavour 1:6

    Article  Google Scholar 

  • Mouritsen OG (2012b) Umami flavour as a means to regulate food intake and to improve nutrition and health. Nutr Health 21:56–75

    Article  PubMed  Google Scholar 

  • Mouritsen OG (2013) Seaweeds. Edible, available & sustainable. Chicago: University of Chicago Press

  • Mouritsen OG, Crawford MA (2007) Polyunsaturated fatty acids, neural function and mental health. Biol Skr Dan Vid Selsk 56:1–87

    Google Scholar 

  • Mouritsen OG, Williams L, Bjerregaard R, Duelund L (2012) Seaweeds for umami flavour in the New Nordic cuisine. Flavour 1:4

    Article  Google Scholar 

  • Murakami S, Takemoto T, Shimizu Z, Daigo K (1953) Effective principle of Digenea. Jpn J Pharm Chem 25:571–574

    CAS  Google Scholar 

  • Nadler JV (1979) Kanic acid: neurophysiological and neurotoxic actions. Life Sci 24:289–300

    Article  PubMed  CAS  Google Scholar 

  • Nadler JV, Evenson DA, Cuthbertson GJ (1981) Comparative study of kainic acid and other amino acods toward rat hippocampal neurons. Neurosci 6/2505–2511:2513–2517

    Google Scholar 

  • Pang S, Lüning K (2004) Tank cultivation of the red alga Palmaria palmata: effects of intermittent light on growth rate, yield and growth kinetics. J Appl Phycol 16:93–99

    Article  Google Scholar 

  • Pereira L (2012) A review of the nutrient composition of selected edible seaweeeds. In: Pomin VH (eds). Seaweed: ecology, nutrient composition, and medicinal uses. Nova Science: New York, Chap 2, pp. 15–47

  • Pleasance S, Xie M, LeBlanc Y, Quilliam MA (1990) Analysis of domoic acid and related compounds by mass spectrometry and gas chromatrography/mass spectrometry as N-trifluoroacetyl-O-silyl derivatives. Biomed Environ Mass Spectrom 19:420–427

    Article  PubMed  CAS  Google Scholar 

  • Pomin VH (ed) (2012) Seaweed: ecology, nutrient composition, and medicinal uses. Nova Science, New York

    Google Scholar 

  • Prasher SO, Beaugeard M, Hawari J, Bera P, Patel RM, Kim SH (2004) Biosorption of heavy metals by red algae (Palmaria palmata). Environ Technol 25:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Ramsey UP, Bird CJ, Shacklock PF, Laycock MV, Wright JLC (1994) Kainic acid and 1′-hydroxykainic acid from Palmariales. Nat Toxins 2:286–292

    Article  PubMed  CAS  Google Scholar 

  • Rhatigan P (2009) The Irish seaweed kitchen. Booklink Co, Down

    Google Scholar 

  • Rødde RSH, Vårum KM, Larsen BA, Myklestad SM (2004) Seasonal and geographical variation in the chemical composition of the red alga Palmaria palmata (L.) Kuntze. Bot Mar 47:125–133

    Article  Google Scholar 

  • Sanchez-Machado DI, Lopez-Cervantes J, Lopez-Hernandez J, Paseiro-Losada P (2004) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85:439–444

    Article  CAS  Google Scholar 

  • Schäfer U, Dawczynski LM, Schubert R, Jahreis G (2009) Dietary value and toxicological potential of macroalgae products. Trace Elements Electrolytes 26:100

    Article  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacotherapy 56:365–379

    Article  CAS  Google Scholar 

  • Smit AJ (2005) Medicinal and pharmaceutical uses of seaweeds: a review. J Appl Phycol 16:245–262

    Article  Google Scholar 

  • Strain SM, Tasker RAR (1991) Hippocampal damage produced by systemic injections of domoic acid in mice. Neurosci 44:343–352

    Article  CAS  Google Scholar 

  • Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501

    Article  PubMed  CAS  Google Scholar 

  • Swanson GT, Sakai R (2009) Ligands for ionotropic glutamate receptors. Prog Mol Subcell Biol 46:123–157

    Article  PubMed  CAS  Google Scholar 

  • Teas J, Pino S, Crichley A, Braverman LE (2004) Variability of iodine content in common commercially available edible seaweeds. Thyroid 14:836–841

    Article  PubMed  CAS  Google Scholar 

  • Tokuşoglu Ö, Ünal MK (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrysis galbana. J Food Sci 68:1144–1148

    Article  Google Scholar 

  • USDA (2013) USDA National Nutrient Database for Standard Reference. http://ndb/nal.usda.gov/

  • van Netten C, Hoption Cann SA, Morley DR, van Netten JP (2000) Elemental and radioactive analysis of commercially available seaweed. Sci Total Environ 255:169–175

    Article  PubMed  Google Scholar 

  • WHO (2011a) Evaluation of certain contaminants in food: seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 959

  • WHO (2011b) Arsenic in drinking water. Background document for development of WHO guidelines for drinking-water quality. WHO, Geneva

    Google Scholar 

  • WHO (2011c) Evaluation of certain food additives and contaminants: seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 960

  • Zava TT, Zava DT (2011) Assessment of Japanese iodine intake based on seaweed consumption in Japan: a literature-based analysis. Thyroid Res 4:14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Mariela Johansen is gratefully acknowledged for translation of OGM’s Danish book on seaweeds into English. Rasmus Bjerregaard (Blue Food) is thanked for supplying specimens of farmed dulse. Shep Erhard (Maine Coast Sea Vegetables) has generously made information available regarding chemical composition of dulse from Maine and provided samples for analysis. Símon Sturluson (Icelandic Blue Mussel & Seaweed) is thanked for supplying samples of wild Icelandic dulse. Lars Williams (Nordic Food Lab and Restaurant Noma) performed some of the aqueous extracts of dulse. Eyjólfur Friðgeirsson (Íslensk hollusta ehf) is acknowledged for correspondence regarding dulse (søl) in Iceland. Susan Løvstad Holdt (The Danish Seaweed Network) is thanked for useful references. Poul Erik Nielsen (Gourmettang) is acknowledged for information on the composition of French seaweed products. Inge Rokkjær (Danish Veterinary and Food Administration, Aarhus, Denmark) is thanked for performing the analyses for inorganic arsenic. Helpful correspondence with Dr. Dorthe Dideriksen (Odense University Hospital) on pharmacological effects of kainic acids is gratefully acknowledged. Mette Rindom Nørrelykke is thanked for giving us access to some unpublished data for fatty acid contents of Danish dulse. MEMPHYS Center for Biomembrane Physics is supported by the Danish National Research Foundation. This work was supported by grants from the Danish Food Industry Agency (J.nr. 3414-09-02518) and from Lundbeckfonden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole G. Mouritsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouritsen, O.G., Dawczynski, C., Duelund, L. et al. On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). J Appl Phycol 25, 1777–1791 (2013). https://doi.org/10.1007/s10811-013-0014-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0014-7

Keywords

Navigation