Skip to main content

Advertisement

Log in

Growth, nitrogen utilization and biodiesel potential for two chlorophytes grown on ammonium, nitrate or urea

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Nitrogen removal from wastewater by algae provides the potential benefit of producing lipids for biodiesel and biomass for anaerobic digestion. Further, ammonium is the renewable form of nitrogen produced during anaerobic digestion and one of the main nitrogen sources associated with wastewater. The wastewater isolates Scenedesmus sp. 131 and Monoraphidium sp. 92 were grown with ammonium, nitrate, or urea in the presence of 5 % CO2, and ammonium and nitrate in the presence of air to optimize the growth and biofuel production of these chlorophytes. Results showed that growth on ammonium, in both 5 % CO2 and air, caused a significant decrease in pH during the exponential phase causing growth inhibition due to the low buffering capacity of the medium. Therefore, biological buffers and pH controllers were utilized to prevent a decrease in pH. Growth on ammonium with pH control (synthetic buffers or KOH dosing) demonstrated that growth (rate and yield), biodiesel production, and ammonium utilization, similar to nitrate- and urea-amended treatments, can be achieved if sufficient CO2 is available. Since the use of buffers is economically limited to laboratory-scale experiments, chemical pH control could bridge the gap encountered in the scale-up to industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeliovich A, Azov Y (1976) Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microb 31:801–806

    CAS  Google Scholar 

  • Amory AM, Vanlerberghe GC, Turpin DH (1991) Demonstration of both a photosynthetic and a nonphotosynthetic CO2 requirement for NH4 + assimilation in the green alga Selenastrum minutum. Plant Physiol 95:192–196

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA (ed) (2005) Algal culturing techniques. Academic Press, San Francisco

    Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Azov Y, Goldman JC (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Environ Microbiol 43:735–739

    PubMed  CAS  Google Scholar 

  • Benjamin MM (2010) Water chemistry. Waveland Press Inc., Long Grove, Reprint edn

    Google Scholar 

  • Bischoff HW, Bold HC (1963) Phycological studies. IV. Some soil algae from enchanted rock and related algal species. University of Texas Publication, Austin

    Google Scholar 

  • Bongers LHJ (1956) Aspects of nitrogen assimilation by cultures of green algae. Mededel Landbouwhoogesch Wageningen 56/15:1–52

    CAS  Google Scholar 

  • Chen CY, Durbin EG (1994) Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar Ecol Prog Ser 109:83–94

    Article  Google Scholar 

  • Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  PubMed  CAS  Google Scholar 

  • Clark S, Francis PS, Conlan XA, Barnett NW (2007) Determination of urea using high-performance liquid chromatography with fluorescence detection after automated derivatisation with Xanthydrol. J Chromatogr A 1161:207–213

    Article  PubMed  CAS  Google Scholar 

  • de Boer K, Moheimani NR, Borowitzka MA, Bahri PA (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24:1681–1698

    Article  CAS  Google Scholar 

  • Di Martino Rigano V, Vona V, Di Martino C, Rigano C (1986) Effect of darkness and CO2 starvation on NH4 + and NO3 assimilation in the unicellular alga Cyanidium caldarium. Physiol Plant 68:34–38

    Article  Google Scholar 

  • Dorling M, McAuley PJ, Hodge H (1997) Effect of pH on growth and carbon metabolism of maltose-releasing Chlorella (Chlorophyta). Eur J Phycol 32:19–24

    Article  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201

    Article  CAS  Google Scholar 

  • Dvořáková-Hladká J (1971) A comparison of growth rate of algae as influenced by variation in nitrogen nutrition in Chlorella pyrenoidosa and Scenedesmus obliquus. Biol Plant 13:1–11

    Article  Google Scholar 

  • Elrifi IR, Holmes JJ, Weger HG, Mayo WP, Turpin DH (1988) RuBP limitation of photosynthetic carbon fixation during NH4 + assimilation: interactions between photosynthesis, respiration, and ammonium assimilation in N-limited green algae. Plant Physiol 87:395–401

    Article  PubMed  CAS  Google Scholar 

  • Fernández E, Galván A, Quesada A (2004) Nitrogen assimilation and its regulation. In: The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Govindjee (ed), vol 7. Advances in photosynthesis and respiration. Springer, Dordrecht, pp. 637–659

  • Fuggi A, Di Martino Rigano V, Vona V, Rigano C (1981) Nitrate and ammonium assimilation in algal cell-suspensions and related pH variations in the external medium, monitored by electrodes. Plant Sci Lett 23:129–138

    Article  CAS  Google Scholar 

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12:331–339

    Article  CAS  Google Scholar 

  • Gardner R, Cooksey K, Mus F, Macur R, Moll K, Eustance E, Carlson R, Gerlach R, Fields M, Peyton B (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol 24:1311–1320

    Article  CAS  Google Scholar 

  • Gardner R, Peters P, Peyton B, Cooksey K (2011) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta. J Appl Phycol 23:1005–1016

    Article  CAS  Google Scholar 

  • Gardner RD, Lohman E, Gerlach R, Cooksey KE, Peyton BM (2013) Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnol Bioeng 110:87–96

    Article  PubMed  CAS  Google Scholar 

  • Gehl KA, Colman B (1985) Effect of external pH on the internal pH of Chlorella saccharophila. Plant Physiol 77:917–921

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Bowes G (1997) Gas exchange and C allocation in Dunaliella salina cells in response to the N source and CO2 concentration used for growth. Plant Physiol 115:1049–1056

    PubMed  CAS  Google Scholar 

  • Goldman JC, Brewer PG (1980) Effect of nitrogen source and growth rate on phytoplankton-mediated changes in alkalinity. Limnol Oceanogr 25:352–357

    Article  CAS  Google Scholar 

  • Griffiths M, van Hille R, Harrison S (2010) Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty-acid profile changes in Chlorella (Chlorophyta) during high pH induced cell-cycle inhibition. J Phycol 26:72–79

    Article  CAS  Google Scholar 

  • Guy RD, Vanlerberghe GC, Turpin DH (1989) Significance of phosphoenolpyruvate carboxylase during ammonium assimilation: carbon isotope discrimination in photosynthesis and respiration by the N-limited green alga Selenastrum minutum. Plant Physiol 89:1150–1157

    Article  PubMed  CAS  Google Scholar 

  • Hodson RC, Thompson JF (1969) Metabolism of urea by Chlorella vulgaris. Plant Physiol 44:691–696

    Article  PubMed  CAS  Google Scholar 

  • Kallas T, Castenholz RW (1982a) Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH. J Bacteriol 149:229–236

    PubMed  CAS  Google Scholar 

  • Kallas T, Castenholz RW (1982b) Rapid transient growth at low pH in the cyanobacterium Synechococcus sp. J Bacteriol 149:237–246

    PubMed  CAS  Google Scholar 

  • Lavoie M, Le Faucheur S, Boullemant A, Fortin C, Campbell PGC (2012) The influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes. J Phycol 48:293–302

    Article  CAS  Google Scholar 

  • Li YQ, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotech 81:629–636

    Article  CAS  Google Scholar 

  • Lourenco SO, Barbarino E, Mancini-Filho J, Schinke KP, Aidar E (2002) Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia 41:158–168

    Article  Google Scholar 

  • Ludwig CA (1938) The availability of different forms of nitrogen to a green alga. Am J Bot 25:448–458

    Article  CAS  Google Scholar 

  • Lundquist T, Woertz I, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, Berkeley

    Google Scholar 

  • Marvan P, Komarek J, Comas A (1984) Weighting and scaling of features in numerical evaluation of coccal green algae Selenastraceae. Arch Hydrobiol Suppl 67:363–400

    Google Scholar 

  • McAuley PJ, Dorling M, Hodge H (1996) Effect of maltose release on uptake and assimilation of ammonium by symbiotic Chlorella (Chlorophyta). J Phycol 32:839–846

    Article  CAS  Google Scholar 

  • Molloy CJ, Syrett PJ (1988) Interrelationships between uptake of urea and uptake of ammonium by microalgae. J Exp Mar Biol Ecol 118:85–95

    Article  Google Scholar 

  • Norici A, Giordano M (2002) Anaplerosis in microalgae. Recent Res Devel Plant Physiol 3:153–164

    CAS  Google Scholar 

  • Nunez VJ, Voltolina D, Nieves M, Pina P, Medina A, Guerrero M (2001) Nitrogen budget in Scenedesmus obliquus cultures with artificial wastewater. Bioresour Technol 78:161–164

    Article  PubMed  CAS  Google Scholar 

  • Pavlova EA, Romanova AK, Demidov ED (1994) Assimilation of inorganic nitrogen by photosynthesizing Chlorella cells. Russ J Plant Physiol 41:200–207

    Google Scholar 

  • Piorreck M, Baasch K-H, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216

    Article  CAS  Google Scholar 

  • Prescott GW (1978) How to know freshwater algae, 3rd edn. McGraw-Hill College, Dubuque

    Google Scholar 

  • Rees TAV (1989) The green hydra symbiosis and ammonium II. Ammonium assimilation and release by freshly isolated symbionts and cultured algae. Proc Roy Soc Lond B 235:365–382

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  • Roon RJ, Levenberg B (1968) An adenosine triphosphate-dependent, avidin-sensitive enzymatic cleavage of urea in yeast and green algae. J Biol Chem 243:5213–5215

    PubMed  CAS  Google Scholar 

  • Schuller KA, Plaxton WC, Turpin DH (1990) Regulation of phosphoenolpyruvate carboxylase from the green alga Selenastrum minutum: properties associated with replenishment of tricarboxylic acid cycle intermediates during ammonium assimilation. Plant Physiol 93:1303–1311

    Article  PubMed  CAS  Google Scholar 

  • Sedlak R (ed) (1991) Phosphorus and nitrogen removal from municipal wastewater: principles and practice, 2nd edn. Lewis, New York

    Google Scholar 

  • Shiraiwa Y, Goyal A, Tolbert NE (1993) Alkalization of the medium by unicellular green-algae during uptake of dissolved inorganic carbon. Plant Cell Physiol 34:649–657

    CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27/4:409–416

    Article  PubMed  CAS  Google Scholar 

  • Thacker A, Syrett PJ (1972) The assimilation of nitrate and ammonium by Chlamydomonas reinhardi. New Phytol 71:423–433

    Article  CAS  Google Scholar 

  • Trainor FR, Cain JR, Shubert LE (1976) Morphology and nutrition of the colonial green alga Scenedesmus: 80 years later. Bot Rev 42:5–25

    Article  Google Scholar 

  • Turpin DH, Bruce D (1990) Regulation of photosynthetic light harvesting by nitrogen assimilation in the green alga Selenastrum minutum. FEBS Lett 263:99–103

    Article  CAS  Google Scholar 

  • Turpin DH, Vanlerberghe GC, Amory AM, Guy RD (1991) The inorganic carbon requirements for nitrogen assimilation. Can J Bot 69:1139–1145

    Article  CAS  Google Scholar 

  • Vanlerberghe GC, Schuller KA, Smith RG, Feil R, Plaxton WC, Turpin DH (1990) Relationship between NH4 + assimilation rate and in vivo phosphoenolpyruvate carboxylase activity: regulation of anaplerotic carbon flow in the green alga Selenastrum minutum. Plant Physiol 94:284–290

    Article  PubMed  CAS  Google Scholar 

  • Voltolina D, Cordero B, Nieves M, Soto LP (1999) Growth of Scenedesmus sp. in artificial wastewater. Bioresour Technol 68:265–268

    Article  CAS  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Jia Y (2010) Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecol Eng 36:379–381

    Article  Google Scholar 

  • Yun Y-S, Lee SB, Park JM, Lee C-I, Yang J-W (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biot 69:451–455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Montana State University Algal Biofuels Group for intellectual support and Lauren Franco for 18S rRNA gene sequence interrogations of Scenedesmus sp. 131. Also of special note is the MSU Center for Biofilm Engineering for instrumental support. Funding was provided by the Montana State Board of Research and Commercialization Technology Grant 10–40 and the National Science Foundation under CHE-1230632.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent M. Peyton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eustance, E., Gardner, R.D., Moll, K.M. et al. Growth, nitrogen utilization and biodiesel potential for two chlorophytes grown on ammonium, nitrate or urea. J Appl Phycol 25, 1663–1677 (2013). https://doi.org/10.1007/s10811-013-0008-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0008-5

Keywords

Navigation