Skip to main content
Log in

New diacylglyceryltrimethylhomoserines from the marine microalga Nannochloropsis granulata and their nitric oxide inhibitory activity

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Chemical investigation of polar lipids from the marine eustigmatophyte microalga Nannochloropsis granulata led to the isolation of six betaine lipid diacylglyceryltrimethylhomoserine (DGTS), namely, (2S)-1,2-bis-O-eicosapentaenoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (1), (2S)-1-O-eicosapentaenoyl-2-O-arachidonoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (2), (2S)-1-O-eicosapentaenoyl-2-O-myristoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (3), (2S)-1-O-eicosapentaenoyl-2-O-palmitoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (4), (2S)-1-O-eicosapentaenoyl-2-O-palmitoleoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (5), and (2S)-1-O-eicosapentaenoyl-2-O-linoleoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (6). Structures of the isolated DGTSs were elucidated based on both spectroscopic technique and degradation methods. This is the first report of isolation of 1 in pure state, and 26 are all new compounds. The isolated betaine lipids showed dose-dependent nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. Further study suggested that these betaine lipids (16) inhibit NO production in RAW264.7 macrophage cells through downregulation of inducible nitric oxide synthase expression, indicating the possible use as an anti-inflammatory agent. This is the first report of DGTS with anti-inflammatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe S, Kaneda T (1975) Studies on effect of marine products on cholesterol metabolism in rat-XI, isolation of a new betaine, ulvaline, from a green laver Monostroma nitidum and its depressing effect on plasma cholesterol levels. Bull Jap Soc Sci Fish 41:567–571

    Article  CAS  Google Scholar 

  • Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653

    Article  PubMed  CAS  Google Scholar 

  • Banskota AH, Gallant P, Stefanova R, Melanson R, O’Leary SJB (2012a) Monogalactosyldiacylglycerols, potent nitric oxide inhibitors from the marine microalga Tetraselmis chui. Nat Prod Res. doi:10.1080/14786419.2012.717285

  • Banskota AH, Stefanova R, Gallant P, McGinn P (2012b) Mono- and digalactosyldiacylglycerols; potent nitric oxide inhibitors from the marine microalga Nannochloropsis granulata. J Appl Phycol. doi:10.1007/s10811-012-9869-2

  • Brown AE, Elovson J (1974) Isolation and characterization of a novel lipid, 1(3),2-diacylglyceryl-(3)-O-4′-(N, N, N-trimethyl)homoserine, from Ochromonas danica. Biochemistry 13:3476–3482

    Google Scholar 

  • Eichenberger W, Araki S, Müller DG (1993) Betaine lipids and phospholipids in brown algae. Phytochemistry 34:1323–1333

    Article  CAS  Google Scholar 

  • Fushiya S, Komatu Y, Nozoe S (1997) Two betaine type amino acid derivatives of Lampteromyces japonicus. Nat Med 51:558

    CAS  Google Scholar 

  • Gils TD (2006) Aspects of nitric oxide in health and disease: a focus on hypertension and cardiovascular disease. J Clin Hypertens 8(12 Suppl 4):2–16

    Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  PubMed  CAS  Google Scholar 

  • Haigh WG, Yoder TF, Ericson L, Pratum T, Winget RR (1996) the characterization and cyclic production of a highly unsaturated homoserine lipid in Chlorella minutissima. Biochim Biophys Acta 1299:183–190

    Article  PubMed  Google Scholar 

  • Kato M, Sakai M, Adachi K, Ikemoto H, Sano H (1996) Distribution of betaine lipids in marine algae. Phytochemistry 42:1341–1345

    Article  CAS  Google Scholar 

  • Kunzler K, Eichenberger W (1997) Betaine lipids and zwitterionic phospholipids in plants and fungi. Phytochemistry 46:883–892

    Article  PubMed  CAS  Google Scholar 

  • Mooy BASV, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappe MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    Article  PubMed  Google Scholar 

  • Müller DG, Eichenberger W (1994) Betaine lipids content and species delimitation in Ectocarpus, Feldmannia and Hincksia (Ectocarpales, Phaeophyceae). Eur J Phycol 29:219–225

    Article  Google Scholar 

  • Nichols BW, Appleby RS (1969) The distribution and biosynthesis of arachidonic acid in algae. Phytochemistry 8:1907–1915

    Article  CAS  Google Scholar 

  • O’Donnell VB, Eiserich JP, Chumley PH, Jablonsky MJ, Krishna NR, Kirk M, Barnes S, Darley-Usmar VM, Freeman BA (1999) Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem Res Toxicol 12:83–92

    Article  PubMed  Google Scholar 

  • Sato N (1988) Dual role of methionine in the biosynthesis of diacylglyceryltrimethylhomoserine in Chlamydomonas reinhardtii. Plant Physiol 86:931–934

    Article  PubMed  CAS  Google Scholar 

  • Sato N (1992) Betaine lipids. Bot Mag Tokyo 105:185–197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to J. Milley, J. Hui, and Dr. J. Melanson for their technical support. This is NRC publication no. 50515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun H. Banskota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banskota, A.H., Stefanova, R., Sperker, S. et al. New diacylglyceryltrimethylhomoserines from the marine microalga Nannochloropsis granulata and their nitric oxide inhibitory activity. J Appl Phycol 25, 1513–1521 (2013). https://doi.org/10.1007/s10811-012-9967-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9967-1

Keywords

Navigation