Skip to main content

Preliminary study on flg22-induced defense responses in female gametophytes of Saccharina japonica (Phaeophyta)

Abstract

Flg22, which is the most conserved 22-amino acid peptide in the N-terminal part of flagellin, functions as an effective elicitor in higher plants. Marine algae and higher plants share some conserved characteristics on defense response pathways. Flg22-induced defense responses were investigated in female gametophytes of Saccharina japonica. Condensation of chloroplasts and thickened cell walls, as well as relatively stable structures of mitochondria and nucleus indicated that there were hypersensitive programmed cell death occurred after induction by flg22. By using luminol-dependent luminescence detection method, rapid release of H2O2 was detected in the induced female gametophytes and reached a peak concentration of about 46 μM at 2 h. Reactive oxygen species production was also observed histologically using the fluorescent dye 2′,7′-dichlorofluorescein diacetate, showing a consistent result with quantitative analysis of H2O2. Furthermore, results of antioxidant enzyme activities indicated that there was a trend in the order of catalase > superoxide dismutase > glutathione peroxidase. Finally, high level phenol content of cell-free extracts was found after flg22 induction. According to our results, flg22 could be an effective elicitor which could induce defense responses in female gametophytes of S. japonica.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    PubMed  Article  CAS  Google Scholar 

  • Bauer Z, Gómez-Gómez L, Boller T, Felix G (2001) Sensitivity of different ecotypes and mutants of Arabidopsis thaliana toward the bacterial elicitor flagellin correlates with the presence of receptor-binding sites. J Biol Chem 276:45669–45676

    PubMed  Article  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    PubMed  Article  CAS  Google Scholar 

  • Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10:335–341

    PubMed  Article  CAS  Google Scholar 

  • Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:1635–1650

    PubMed  CAS  Google Scholar 

  • Che FS, Iwano M, Tanaka N, Takayama S, Minami E, Shibuya N, Kadota I, Isogai A (1999) Biochemical and morphological features of rice cell death induced by Pseudomonas avenae. Plant Cell Physiol 40:1036–1045

    Article  CAS  Google Scholar 

  • Che FS, Nakajima Y, Tanaka N, Iwano M, Yoshida T, Takayama S, Kadota I, Isogai A (2000) Flagellin from an incompatible strain of Pseudomonas avenae induces a resistance response in cultured rice cells. J Biol Chem 275:32347–32356

    PubMed  Article  CAS  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    PubMed  Article  CAS  Google Scholar 

  • Collén J, Pedersén M, Bornman CH (1994) A stress-induced oxidative burst in Eucheuma platycladum (Rhodophyta). Plant Physiol 92:417–422

    Article  Google Scholar 

  • Collén J, Rio MJ, García-Reina G, Pedersén M (1995) Photosynthetic production of hydrogen peroxide by Ulva rigida C. Ag. (Chlorophyta). Planta 196:225–230

    Article  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    PubMed  Article  CAS  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    PubMed  Article  Google Scholar 

  • Gómez-Gómez L, Boller T (2002) Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7:251–256

    PubMed  Article  Google Scholar 

  • Gómez-Gómez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284

    PubMed  Article  Google Scholar 

  • Graca JV, Martin MM (1975) Ultrastructural changes in tobacco mosaic virus-induced local lesions in Nicotiana tabacum L. cv. “Samsu NN”. Physiol Plant Pathol 7:287–291

    Article  Google Scholar 

  • Greenberg JT (1997) Programmed cell death in plant–pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48:525–545

    PubMed  Article  CAS  Google Scholar 

  • Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. PNAS 104:12217–12222

    Article  Google Scholar 

  • Huang J, Tang XX, Liu T, Yan XJ, Jiang M, Li YQ (2002) Alteration of ultrastructures and level of polyphenol and polyphenoloxidase of Laminaria japonica during alginic acid decomposing bacteria infection. Chinese High Techn Lett 12:74–77 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    PubMed  Article  CAS  Google Scholar 

  • Küpper FC, Kloareg B, Guern J, Potin P (2001) Oligoguluronates elicit an oxidative burst in the brown algal kelp Laminaria digitata. Plant Physiol 125:278–291

    PubMed  Article  Google Scholar 

  • Kupper FC, Gaquerel E, Boneberg EM, Morath S, Salaun JP, Potin P (2006) Early events in the perception of lipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activation of fatty acid oxidation cascades. J Exp Bot 57:1991–1999

    PubMed  Article  Google Scholar 

  • Leblanc C, Colin C, Cosse A, Delage L, La Barre S, Morin P, Fiévet B, Voiseux C, Ambroise Y, Verhaeghe E, Amouroux D, Donard O, Tessier E, Potin P (2006) Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie 88:1773–1785

    PubMed  Article  CAS  Google Scholar 

  • Marja PK, Anu IH, Heikki JV, Jussi-Pekka R, Kalevi P, Tytti SK, Marina H (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  Google Scholar 

  • Meindl T, Boller T, Felix G (2000) The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12:1783–1794

    PubMed  CAS  Google Scholar 

  • Menéndez-Benavente L, Teixeira FK, Kamei CLA, Pinheiro MM (2004) Salt stress induces expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci 166:323–331

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  Article  CAS  Google Scholar 

  • Mittler R, Lam E (1995) Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 7:1951–1962

    PubMed  CAS  Google Scholar 

  • Mittler R, Simon L, Lam E (1997) Pathogen-induced programmed cell death in tobacco. J Cell Sci 110:1333–1344

    PubMed  CAS  Google Scholar 

  • Mizuta H, Yasui H (2010) Significance of radical oxygen production in sorus development and zoospore germination in Saccharina japonica (Phaeophyceae). Bot Mar 53:409–416

    Article  CAS  Google Scholar 

  • Naito K, Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2008) Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. Mol Plant Microbe Interact 21:1165–1174

    PubMed  Article  CAS  Google Scholar 

  • Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, Jones JD (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18(9):650–655

    PubMed  Article  CAS  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    PubMed  Article  Google Scholar 

  • Peng M, Kùc J (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696–699

    Article  CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    PubMed  Article  CAS  Google Scholar 

  • Postel S, Kemmerling B (2009) Plant systems for recognition of pathogen-associated molecular patterns. Semin Cell Dev Biol 20:1025–1031

    PubMed  Article  CAS  Google Scholar 

  • Roebuck P, Sexton R, Mansfield JW (1978) Ultrastructural observations on the development of the hypersensitive reaction in leaves of Phaseolus vulgaris cv. Red Mexican inoculated with Pseudomonas phaseolicola (race 1). Physiol Plant Pathol 12:151–157

    Article  Google Scholar 

  • Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1999) Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res Int 32:407–412

    Article  Google Scholar 

  • Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005–5013

    PubMed  Article  CAS  Google Scholar 

  • Schuster SC, Khan S (1994) The bacterial flagellar motor. Annu Rev Biophys Biomol Struct 23:509–539

    PubMed  Article  CAS  Google Scholar 

  • Shahidi F, Wanasundara PKJPD (1992) Phenolic antioxidants: criteria review. Food Sci Nutr 32:67–103

    CAS  Google Scholar 

  • Strack D (1997) Phenolic metabolism. In: Dey PM, Harborne JB (eds) Plant Biochemistry. Academic Press, New York, pp 387–416

    Chapter  Google Scholar 

  • Sugihara N, Arakawa T, Ohnishi M, Furuno K (1999) Anti and pro-oxidative effects of flavonoids on metal induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes located with α-linolenic acid. Free Radic Biol Med 27:1313–1323

    PubMed  Article  CAS  Google Scholar 

  • Tang XX, Yang Z, Huang J, Yan XJ (2001) Effects of infection by algnic acid decomposing bacteria on activity of antioxidant enzymes in Laminaria japonica. J Fish Sci China 25:424–427 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    PubMed  Article  Google Scholar 

  • Wang GG (2003) Studies on defense mechanisms of Laminaria to pathogens. Dissertation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao

  • Wang GG, Liu XY, Li XH, Lin W, Yan XJ, Duan DL (2004a) Spatial-temporal changes of Ca2+ distribution in cells of Laminaria japonica infected by alginic acid degradation bacteria. Chin J Oceanol Limnol 9:36

    Google Scholar 

  • Wang GG, Lin W, Zhang LJ, Yan XJ, Duan DL (2004b) Programmed cell death in Laminaria japonica (Phaeophyta) tissues infected with alginic acid decomposing bacterium. Prog Nat Sci 14:1064–1068

    Article  CAS  Google Scholar 

  • Wang GG, Shuai L, Li Y, Lin W, Zhao XW, Duan DL (2008) Phylogenetic analysis of epiphytic marine bacteria on the hole-rotten diseased sporophytes of Laminaria japonica. J Appl Phycol 20:403–409

    Article  Google Scholar 

  • Wang SS, Wei XJ, Lu BJ, Wang GG (2012) Preliminary study on flg22-induced defense responses in sporophytes of Saccharina japonica (Phaeophyta). J Fish China (in Chinese with English abstract, in press)

  • Weinberger F (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol Bull 213:290–302

    PubMed  Article  CAS  Google Scholar 

  • Weinberger F, Friedlander M (2000) Response of Gracilaria conferta (Rhodophyta) to oligoagars results in defense against agar-degrading epiphytes. J Phycol 36:1079–1086

    Article  CAS  Google Scholar 

  • Weinberger F, Friedlander M, Hoppe HG (1999) Oligoagars elicit a physiological response in Gracilaria conferta (Rhodophyta). J Phycol 35:747–755

    Article  CAS  Google Scholar 

  • Weinberger F, Richard C, Kloareg B, Kashman Y, Hoppe HG, Friedlander M (2001) Structure-activity relationships of oligoagar elicitors toward Gracilaria conferta (Rhodophyta). J Phycol 37:418–426

    Article  CAS  Google Scholar 

  • Zhang WW (2003) Histochemical changes and occurrence of phytoalexins in Laminaria japonica during host’s anti-pathogenesis process. Dissertation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Immunol Rev 20:10–16

    CAS  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Plant Biol 12:414–420

    CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in arabidopsis through flagellin perception. Nature 428:764–767

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the Natural Science Foundation of Shandong Province, China (no. Y2007D42), science and technology development project of Qingdao, China, 12-1-4-1-(4)-jch, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, (2010) 1561, SRTP (Student Research Training Program) of Ocean University of China, 201210423048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoge Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, S., Zhao, F., Wei, X. et al. Preliminary study on flg22-induced defense responses in female gametophytes of Saccharina japonica (Phaeophyta). J Appl Phycol 25, 1215–1223 (2013). https://doi.org/10.1007/s10811-012-9911-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9911-4

Keywords

  • Defense response
  • Elicitor
  • Female gametophyte
  • flg22
  • Saccharina japonica
  • Phaeophyta