Skip to main content

Advertisement

Log in

Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The effects of several physiological parameters on H2 production rate in the unicellular halotolerant cyanobacterium Aphanothece halophytica were investigated. Under nitrogen deprivation, the growth of cells was inhibited, but H2 production rate was enhanced approximately fourfold. Interestingly, cells grown under sulfur deprivation exhibited a decrease in cell growth, H2 production rate, and bidirectional hydrogenase activity. Glucose was the preferred sugar source for H2 production by A. halophytica, but H2 production decreased at high glucose concentrations. H2 production rate was optimum when cells were grown in the presence of 0.75 M NaCl, or 0.4 μM Fe3+, or 1 μM Ni2+. The optimum light intensity and temperature for H2 production were 30 μmol photons m−2 s−1 and 35 °C, respectively. A two-stage culture of A. halophytica was performed in order to overcome the reduction of cell growth in N-free medium. In the first stage, cells were grown in normal medium to accumulate biomass, and in the second stage, H2 production by the obtained biomass was induced by growing cells in N-free medium supplemented with various chemicals for 24 h. A. halophytica grown in N-free medium containing various MgSO4 concentrations had a high H2 production rate between 11.432 and 12.767 μmol H2 mg chlorophyll a (chl a)−1 h−1, a 30-fold increase compared to cells grown in normal medium. The highest rate of 13.804 μmol H2 mg chl a −1 h−1 was obtained when the N-free growth medium contained 0.4 μM Fe3+. These results suggested the possibility of using A. halophytica and some other halotolerant cyanobacteria thriving under extreme environmental conditions in the sea as potential sources for H2 production in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira maxima”. Appl Environ Microbiol 74:6102–6113

    Article  PubMed  CAS  Google Scholar 

  • Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120

    Article  PubMed  CAS  Google Scholar 

  • Axelsson R, Lindblad P (2002) Transcriptional regulation of Nostoc hydrogenases: effects of oxygen, hydrogen, and nickel. Appl Environ Microbiol 68:444–447

    Article  PubMed  CAS  Google Scholar 

  • Baebprasert W, Lindblad P, Incharoensakdi A (2010) Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Int J Hydrog Energy 35:6611–6616

    Article  CAS  Google Scholar 

  • Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13:610–616

    Article  PubMed  CAS  Google Scholar 

  • Belkin S, Padan E (1978) Hydrogen metabolism in the facultative anoxygenic cyanobacteria (Blue-green algae) Oscillatoria limnetica and Aphanothece halophytica. Arch Microbiol 116:109–111

    Article  PubMed  CAS  Google Scholar 

  • Carrieri D, Ananyev G, Garcia Costas AM, Bryant DA, Dismukes GC (2008) Renewable hydrogen production by cyanobacteria: nickel requirements for optimal hydrogenase activity. Int J Hydrog Energy 33:2014–2022

    Article  CAS  Google Scholar 

  • Chen PC, Fan SH, Chiang CL, Lee CM (2008) Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3. Int J Hydrog Energy 33:1460–1464

    Article  CAS  Google Scholar 

  • Cournac L, Guedeney G, Peltier G, Vignais PS (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737–1746

    Article  PubMed  CAS  Google Scholar 

  • Daday A, Mackerras AH, Smith GD (1985) The effect of nickel on hydrogen metabolism and nitrogen fixation in the cyanobacterium Anabaena cylindrica. J Gen Microbiol 131:231–238

    CAS  Google Scholar 

  • Dawar S, Mohanty P, Behera BK (1999) Sustainable hydrogen production in the cyanobacterium Nostoc sp. ARM 411 grown in fructose- and magnesium sulphate-enriched culture. World J Microbiol Biotechnol 15:329–332

    Article  Google Scholar 

  • Dean DR, Bolin JT, Zheng L (1993) Nitrogen metalloclusters: structure, organization, and synthesis. J Bacteriol 175:6737–6744

    PubMed  CAS  Google Scholar 

  • Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Fact 4:36–46

    Article  PubMed  Google Scholar 

  • Ferreira D, Stal LJ, Moradas-Ferreira P, Mendes MV, Tamagnini P (2009) The relation between N2 fixation and H2 metabolism in the marine filamentous nonheterocystous cyanobacterium Lyngbya aestuarii CYY 9616. J Phycol 45:898–905

    Article  CAS  Google Scholar 

  • Garlick S, Oren A, Padan E (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. J Bacteriol 29:623–629

    Google Scholar 

  • Geider RJ, Roche J (1994) The role of iron in phytophankton photosynthesis, and the potential for iron limitation of primary productivity in the sea. Photosynth Res 399:275–301

    Article  Google Scholar 

  • Gutekunst K, Hoffmann D, Lommer M, Egert M, Suzuki I, Schulz-Friedrich R, Appel J (2006) Metal dependence and intracellular regulation of the bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803. Int J Hydrog Energy 31:1452–1459

    Article  CAS  Google Scholar 

  • Hibino T, Kaku N, Yoshikawa H, Takabe T, Takabe T (1999) Molecular characterization of DnaK from the halotolerant cyanobacterium Aphanothece halophytica for ATPase, protein folding, and copper binding under various salinity conditions. Plant Mol Biol 40:409–418

    Article  PubMed  CAS  Google Scholar 

  • Incharoensakdi A, Waditee-Sirisattha R (2013) Regulatory mechanisms of cyanobacteria in response to osmotic stress. In: Srivastava et al. (eds) Stress biology of cyanobacteria: molecular mechanisms to cellular responses. Taylor & Francis/CRC Press, Boca Raton, Florida (in press)

  • Ishitani M, Takabe T, Kojima K, Takabe T (1993) Regulation of glycinebetaine accumulation in the halotolerant cyanobacterium Aphanothece halophytica. Aust J Plant Physiol 20:693–703

    Article  CAS  Google Scholar 

  • Jeffries TW, Timourian H, Ward RL (1978) Hydrogen production by Anabaena cylindrica: effect of varying ammonium and ferric ions, pH and light. Appl Environ Microbiol 35:704–710

    PubMed  CAS  Google Scholar 

  • Khetkorn W, Lindblad P, Incharoensakdi A (2010) Enhanced biohydrogen production by the N2-fixing cyanobacterium Anabaena siamensis strain TISTR 8012. Int J Hydrog Energy 35:12767–12776

    Article  CAS  Google Scholar 

  • Khetkorn W, Baebprasert W, Lindblad P, Incharoensakdi A (2012) Redirecting the electron flow towards the nitrogenase and bidirectional Hox-hydrogenase by using specific inhibitors results in enhanced H2 production in the cyanobacterium Anabaena siamensis TISTR 8012. Bioresour Technol 118:265–271

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Polasa H (1991) Influence of nickel and copper on photobiological hydrogen production and uptake in Oscillatoria subbrevis strain111. Proc Indian Natl Sci Acad B57:281–285

    Google Scholar 

  • Kumazawa S (2003) Photoproduction of hydrogen by the marine heterocystous cyanobacterium Anabaena species TU37-1 under a nitrogen atmosphere. Mar Biotechnol 5:222–226

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa S, Asakawa H (1995) Simultaneous production of H2 and O2 in closed vessels by marine cyanobacterium Anabaena sp. TU37-1 under high-cell-density conditions. Biotechnol Bioeng 46:396–398

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa S, Mitsui A (1981) Characterization and optimization of hydrogen photoproduction by saltwater blue-green algae, Oscillatoria sp. Miami BG7. I. Enhancement through limiting the supply of nitrogen nutrients. Int J Hydrog Energy 6:339–348

    Article  CAS  Google Scholar 

  • Kumazawa S, Mitsui A (1994) Efficient hydrogen photoproduction by synchronous grown cell of a marine cyanobacterium, Synechococcus sp. Miami BG 043511, under high cell density conditions. Biotechnol Bioeng 44:854–858

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa S, Shimamura K (1993) Photosynthesis-dependent production of H2 by a marine cyanobacterium, Anabaena sp. TU37-1. J Mar Biotechnol 1:159–162

    CAS  Google Scholar 

  • Kuwada Y, Ohta Y (1989) Hydrogen production and carbohydrate consumption by Lyngbya sp. (No. 108). Agric Biol Chem 53:2847–2851

    Article  CAS  Google Scholar 

  • Lambert GR, Smith GD (1977) Hydrogen formation by marine blue-green algae. FEBS Lett 83:159–162

    Article  PubMed  CAS  Google Scholar 

  • Lin JT, Stewart V (1997) Nitrate assimilation by bacteria. Adv Microb Physiol 39:1–30

    Article  Google Scholar 

  • Ludwig M, Schulz-Friedrich R, Appel J (2006) Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: implications for the phylogenetic origin of cyanobacterial and algal hydrogenases. J Mol Evol 63:758–768

    Article  PubMed  CAS  Google Scholar 

  • Luo YH, Mitsui A (1994) Hydrogen production from organic substrates in an aerobic nitrogen-fixing marine unicellular cyanobacterium Synechococcus sp. strain Miami BG 043511. J Biotechnol Bioeng 44:1255–1260

    Article  CAS  Google Scholar 

  • MacKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Article  PubMed  CAS  Google Scholar 

  • Min H, Sherman LA (2010) Hydrogen production by the unicellular, diazotroph cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 76:4293–4301

    Article  PubMed  CAS  Google Scholar 

  • Oxelfelt F, Tamagnini P, Salema R, Lindblad P (1995) Hydrogen uptake in Nostoc strain PCC73102: effects of nickel, hydrogen, carbon and nitrogen. Plant Physiol Biochem 33:617–623

    CAS  Google Scholar 

  • Perry JH (1963) Chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  • Phlips EJ, Mitsui A (1983) Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. strain Miami BG7. Appl Environ Microbiol 45:1212–1220

    PubMed  CAS  Google Scholar 

  • Pinto FL, Troshina O, Lindblad P (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrog Energy 27:1209–1215

    Article  Google Scholar 

  • Prabaharan D, Subramanian G (1996) Oxygen-free hydrogen production by the marine cyanobacterium Phormidium valderianum BDU 20041. Bioresour Technol 57:111–116

    Article  CAS  Google Scholar 

  • Prabaharan D, Arun-Kumar D, Uma L, Subramanian G (2010) Dark hydrogen production in nitrogen atmosphere—an approach for sustainability by marine cyanobacterium Leptolyngbya valderiana BDU 20041. Int J Hydrog Energy 35:10725–10730

    Article  CAS  Google Scholar 

  • Prince RC, Kheshgi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31

    Article  PubMed  CAS  Google Scholar 

  • Rai LC, Raizada M (1986) Nickel induced stimulation of growth, heterocyst differentiation, 14CO2 uptake and nitrogenase activity in Nostoc muscorum. New Phytol 104:111–114

    Article  CAS  Google Scholar 

  • Rashid N, Song W, Park J, Jin H-F, Lee K (2009) Characteristics of hydrogen production by immobilized cyanobactrium Microcystis aeruginosa through cycles of photosynthesis and anaerobic incubation. J Ind Eng Chem 15:498–503

    Article  CAS  Google Scholar 

  • Raven JA, Evans MCW, Korbs RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    Article  CAS  Google Scholar 

  • Reddy PM, Spiller H, Albrecht SL, Shanmugam KT (1996) Photodissimilation of fructose to H2 and CO2 by a dinitrogen-fixing cyanobacterium, Anabaena variabilis. Appl Environ Microbiol 62:1220–1226

    PubMed  CAS  Google Scholar 

  • Serebryakova LT, Sheremetieva M, Tsygankov AA (1998) Reversible hydrogenase activity of Gloeocapsa alpicola in continuous culture. FEMS Microbiol Lett 166:89–94

    Article  CAS  Google Scholar 

  • Serebryakova LT, Sheremetieva M, Lindblad P (1999) Hydrogenase activity of the unicellular cyanobacterium Gloeocapsa alpicola CALU743 under conditions of nitrogen limitation. Microbiology 68:249–253

    CAS  Google Scholar 

  • Shah V, Garg N, Madamwar D (2001) Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microbiol Lett 194:71–75

    Article  PubMed  CAS  Google Scholar 

  • Shah V, Garg N, Madamwar D (2003) Ultrastructure of the cyanobacterium Nostoc muscorum and exploitation of the culture for hydrogen production. Folia Microbiol 48:65–70

    Article  CAS  Google Scholar 

  • Suda S, Kumazawa S, Mitsui A (1992) Change in the H2 photoproduction capability in a synchronously grown aerobic nitrogen-fixing cyanobacterium, Synechococcus sp. Miami BG 043511. Arch Microbiol 158:1–4

    Article  CAS  Google Scholar 

  • Takabe T, Incharoensakdi A, Arakawa K, Yokota S (1988) CO2 fixation rate and RuBisCO content increase in the halotolerant cyanobacterium, Aphanothece halophytica, grown in high salinities. Plant Physiol 88:1120–1124

    Article  PubMed  CAS  Google Scholar 

  • Tel-Or E, Melhamed-Harel H (1981) Adaptation to salt of photosynthetic apparatus in cyanobacteria. In: Akoyunoglou G (ed) Photosynthesis. Bablan International Science Services, Philadelphia, pp 455–462

    Google Scholar 

  • Tindall DR, Yopp JH, Miller DM, Schmid WE (1978) Physico-chemical parameters governing the growth of Aphanothece halophytica (Chroococcales) in hypersaline media. Phycologia 17:179–185

    Article  CAS  Google Scholar 

  • Troshina O, Serebryakova LT, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU743 during fermentation. Int J Hydrog Energy 27:1283–1289

    Article  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    PubMed  CAS  Google Scholar 

  • Weissman JC, Benemann JR (1977) Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Appl Env Microbiol 33:123–131

    CAS  Google Scholar 

  • Wilson ST, Tozzi S, Foster RA et al (2010) Hydrogen cycling by the unicellular marine diazotroph Crocosphaera watsonii strain WH8501. Appl Environ Microbiol 76:6797–6803

    Article  PubMed  CAS  Google Scholar 

  • Wutipraditkul N, Waditee R, Incharoensakdi A et al (2005) Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH. Appl Environ Microbiol 71:4176–4184

    Article  PubMed  CAS  Google Scholar 

  • Xiankong Z, Haskell JB, Tabita FR, Van Baalen C (1983) Aerobic hydrogen production by the heterocystous cyanobacteria Anabaena spp. strains CA and 1F. J Bacteriol 156:1118–1122

    CAS  Google Scholar 

  • Xiankong Z, Tabita FR, Van Baalen C (1984) Nickel control of hydrogen production and uptake in Anabaena spp. strains CA and 1F. J Gen Microbiol 130:1815–1818

    Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulphur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Commission on Higher Education (CHE), Thailand (The university staff development consortium). S. Taikhao is also thankful to the Strategic Scholarships for Frontier Research Network for the Ph.D. Program provided by CHE. A. Incharoensakdi thanks CHE and the Thai government for the National Research University Project (FW 0659A) and the Stimulus Package 2 (TKK 2555), respectively. The authors would like to thank Prof Peter Lindblad (Uppsala, Sweden) for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aran Incharoensakdi or Saranya Phunpruch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taikhao, S., Junyapoon, S., Incharoensakdi, A. et al. Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica . J Appl Phycol 25, 575–585 (2013). https://doi.org/10.1007/s10811-012-9892-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9892-3

Keywords

Navigation