A practical perspective on ulvan extracted from green algae

Abstract

Researchers have many times turned their attention to nature and biological processes to develop novel technologies and materials. In a medical perspective, nature-based products are believed to be a strategic alternative approach to the use of fully synthetic materials, particularly in the design of medical devices. In the past decades, marine organisms have become the focus of considerable attention as potential sources of valuable materials. The sustainable exploitation and valorisation of natural marine resources constitutes a highly attractive and strategic platform for the development of novel biomaterials, with both economic and environmental benefits. In this context, algae are known to synthesise large quantities of polysaccharides and are well established sources of these particularly interesting molecules, many of which are known for their applicability in the design of biomaterials. Agar, carrageenan and alginates are some of the most known examples, and their uses can range from food to biomedical applications. However, few of the world’s available seaweed species are used commercially. Among the three main divisions of macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), the green algae remain largely unexploited in this biomedical arena. While the demand for novel materials and technologies increases, so does the research of unexploited marine green algae including its unique polysaccharide ulvan.

This is a preview of subscription content, access via your institution.

References

  1. Abdel-Fattah AF, Edrees M (1972) A study on the polysaccharide content of Ulva lactuca L. Qual Plant Mater Veg 22:15–22

    CAS  Article  Google Scholar 

  2. Alves A, Caridade SG, Mano JF, Sousa RA, Reis RL (2010) Extraction and physico-chemical characterization of a versatile biodegradable polysaccharide obtained from green algae. Carbohyd Res 345:2194–2200

    CAS  Article  Google Scholar 

  3. Alves A, Duarte ARC, Mano JF, Sousa RA, Reis RL (2012a) PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. J Supercrit Fluid 65:32–38

    CAS  Article  Google Scholar 

  4. Alves A, Pinho ED, Neves NM, Sousa RA, Reis RL (2012b) Processing ulvan into 2D structures: cross-linked ulvan membranes as new biomaterials for drug delivery applications. Int J Pharm 426:76–81

    PubMed  CAS  Article  Google Scholar 

  5. Andrade LR, Salgado LT, Farina M, Pereira MS, Mourao PAS, Amado Filho GM (2004) Ultrastructure of acidic polysaccharides from the cell walls of brown algae. J Struct Biol 145:216–225

    PubMed  CAS  Article  Google Scholar 

  6. Andrès E, Molinari J, Péterszegi G, Mariko B, Ruszova E, Velebny V, Faury G, Robert L (2006) Pharmacological properties of rhamnose-rich polysaccharides, potential interest in age-dependent alterations of connectives tissues. Pathol Biol 54:420–425

    PubMed  Article  CAS  Google Scholar 

  7. Andrieux C, Hibert A, Houari A-M, Bensaada M, Popot F, Szylit O (1998) Ulva lactuca is poorly fermented but alters bacterial metabolism in rats inoculated with human faecal flora from methane and non-methane producers. J Sci Food Agr 77:25–30

    CAS  Article  Google Scholar 

  8. Araújo L, Stadnik MJ, Borsato LC, Valdebenito-Sanhueza RM (2008) Potassium phosphite and ulvan in the control of ‘Gala’ leaf spot on apple. Trop Plant Pathol 33:148–152

    Article  Google Scholar 

  9. Barbosa MA, Granja PL, Barrias CC, Amaral IF (2005) Polysaccharides as scaffolds for bone regeneration. ITBM-RBM 26(3):212–217

    Article  Google Scholar 

  10. Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC, Plaisancie P (2000) Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 46:218–224

    PubMed  CAS  Article  Google Scholar 

  11. Barsanti L, Gualtieri P (2006) Algae—anatomy, biochemistry and biotechnology. Taylor & Francis Group, New York

    Google Scholar 

  12. Baumann L, Saghari S (2009) Basic science of the dermis. In: Baumann L, Saghari S, Weisberg E (eds) Cosmetic dermatology, principles and practice, 2nd edn. McGraw-Hill, New York, pp 8–13

    Google Scholar 

  13. Béress A, Wassermann O, Bruhn T, Béress L, Kraiselburd EN, Gonzalez LV, de Motta GE, Chavez PI (1993) A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J Nat Prod 56:478–488

    PubMed  Article  Google Scholar 

  14. Bernhardt A, Despang F, Lode A, Demmler A, Hanke T, Gelinsky M (2009) Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate–gelatine–hydroxyapatite scaffolds with anisotropic pore structure. J Tissue Eng Regen M 3(1):54–62

    CAS  Article  Google Scholar 

  15. Blin X (2007) Film of cosmetic product. FR Patent WO 2007/007294 (18 January 2007)

  16. Bobin-Dubigeon C, Lahaye M, Barry J-L (1997a) Human colonic bacterial degradability of dietary fibres from sea-lettuce (Ulva sp.). J Sci Food Agr 73:149–159

    CAS  Article  Google Scholar 

  17. Bobin-Dubigeon C, Lahaye M, Guillon F, Barry J-L, Gallant DJ (1997b) Factors limiting the biodegradation of Ulva sp. cell-wall polysaccharides. J Sci Food Agr 75:341–351

    CAS  Article  Google Scholar 

  18. Bocanegra A, Bastida S, Benedi J, Rodenas S, Sanchez-Muniz FJ (2009) Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food 12:236–258

    PubMed  CAS  Article  Google Scholar 

  19. Brading JWE, Georg-Plant MMT, Hardy DM (1954) The polysaccharide from the alga Ulva lactuca—purification, hydrolysis, and methylation of the polysaccharide. J Chem Soc:319–324

  20. Briand X (1991) Utilisation of extracts of algae for the preparation of pharmaceutical, cosmetic, food or agricultural compositions. PCT Patent WO 91/07946 (13 June 1991)

  21. Briand X, Cluzet S, Esquerre-Tugaye M-T, Salamagne S, Dumas B (2005) Use of ulvans as activators of plant defence and resistance reactions against biotic and abiotic stresses. PCT Patent WO 2005/094588 (13 October 2005)

  22. Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresource Technol 102:2595–2604

    CAS  Article  Google Scholar 

  23. Buermann CW, Oronsky AL, Horowitz MI (1979) Chondroitin sulfate-degrading enzymes in human polymorphonuclear leukocytes: characteristics and evidence for concerted mechanism. Arch Biochem Biophys 193:277–283

    PubMed  CAS  Article  Google Scholar 

  24. Cannell RJP, Dufresne C, Florence AJ, Gailliot FP, Gibbons S, Gray AI, Kinghorn AD, Kothandaraman S, Lee I-S, McAlpine J, Salituro GM, Shankland N, Shimizu Y, Silva GL, Stead P, VanMiddlesworth F, Venkat E, Verrall MS, Warr SRC, Wright AE (1998) Natural products isolation. In: Cannell RJP (ed) Methods in biotechnology, vol 4. Humana Press, Totowa, pp 343–408

    Google Scholar 

  25. Castro R, Zarra I, Lamas J (2004) Water-soluble seaweed extracts modulate the respiratory burst activity of turbot phagocytes. Aquaculture 229:67–78

    Article  Google Scholar 

  26. Castro R, Piazzon MC, Zarra I, Leiro J, Noya M, Lamas J (2006) Stimulation of turbot phagocytes by Ulva rigida C. Agardh polysaccharides. Aquaculture 254:9–20

    CAS  Article  Google Scholar 

  27. Castro R, Piazzon MC, Noya M, Leiro JM, Lamas J (2008) Isolation and molecular cloning of a fish myeloperoxidase. Mol Immunol 45:428–437

    PubMed  CAS  Article  Google Scholar 

  28. Castro-González MI, Romo FPG, Pérez-Estrella S, Carrillo-Domínguez S (1996) Chemical composition of the green alga Ulva lactuca. Cienc Mar 22:205–213

    Google Scholar 

  29. Charlier RH, Morand P, Finkl CW, Thys A (2007) Green tides on the Brittany Coasts. Environ Res Eng Manag 3:52–59

    Google Scholar 

  30. Chattopadhyay K, Mandal P, Lerouge P, Driouich A, Ghosal P, Ray B (2007) Sulphated polysaccharides from Indian samples of Enteromorpha compressa (Ulvales, Chlorophyta): isolation and structural features. Food Chem 104:928–935

    CAS  Article  Google Scholar 

  31. Chuda Y, Ohnishi-Kameyama M, Nagata T (1997) Identification of the forms of boron in seaweed by 11B NMR. Phytochemistry 46:209–213

    CAS  Article  Google Scholar 

  32. Cluzet S, Torregrosa C, Jacquet C, Lafitte C, Fournier J, Mercier L, Salamagne S, Briand X, Esquerre-Tugaye MT, Dumas B (2004) Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp. Plant Cell Environ 27:917–928

    CAS  Article  Google Scholar 

  33. Conrad HE (1980) The acid lability of the glycosidic bonds of l-iduronic acid residues in glycosaminoglycans. Biochem J 191:355–363

    PubMed  CAS  Google Scholar 

  34. Correlo VM, Costa-Pinto AR, Sol P, Covas JA, Bhattacharya M, Neves NM, Reis RL (2010) Melt processing of chitosan-based fibers and fiber-mesh scaffolds for the engineering of connective tissues. Macromol Biosci 10:1495–1504

    PubMed  CAS  Article  Google Scholar 

  35. Costa LS, Fidelis GP, Cordeiro SL, Oliveira RM, Sabry DA, Câmara RBG, Nobre LTDB, Costa MSSP, Almeida-Lima J, Farias EHC, Leite EL, Rocha HAO (2010) Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother 64:21–28

    PubMed  CAS  Article  Google Scholar 

  36. Costa C, Alves A, Pinto P, Sousa RA, Silva E, Reis RL, Rodrigues A (2012) Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohyd Polym 88:537–546

    CAS  Article  Google Scholar 

  37. Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Pt B-Rev 17:331–347

    CAS  Article  Google Scholar 

  38. Courtois J (2009) Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology. Curr Opin Microbiol 12:261–273

    PubMed  CAS  Article  Google Scholar 

  39. Cruz DMG, Ivirico JLE, Gomes MM, Ribelles JLG, Sánchez MS, Reis RL, Mano JF (2008) Chitosan microparticles as injectable scaffolds for tissue engineering. J Tissue Eng Regen M 2:378–380

    CAS  Article  Google Scholar 

  40. d’Ayala G, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13:2069–2106

    Article  CAS  Google Scholar 

  41. Daniels BA (2004a) Seaweed extract composition for retardation of cardiovascular disorders and preservation of healthy cardiovascular function. US Patent US 2004/0170645 (2 September 2004)

  42. Daniels BA (2004b) Seaweed extract composition for treatment of diabetes and diabetic complications. PCT Patent WO 2004/103280 (2 December 2004)

  43. De la Fuente M, Hernanz A, Viniegra S, Miquel J (2011) Sulfur-containing antioxidants increase in vitro several functions of lymphocytes from mice. Int Immunopharmacol 11:661–669

    PubMed  Article  CAS  Google Scholar 

  44. de Reviers B, Leproux A (1993) Characterization of polysaccharides from Enteromorpha intestinalis (L.) Link, Chlorophyta. Carbohyd Polym 22:253–259

    Article  Google Scholar 

  45. Delattre C, Michaud P, Keller C, Elboutachfaiti R, Beven L, Courtois B, Courtois J (2006) Purification and characterization of a novel glucuronan lyase from Trichoderma sp. GL2. Appl Microbiol Biot 70:437–443

    CAS  Article  Google Scholar 

  46. Demais H, Brendle J, Deit HL, Laza AL, Lurton L, Brault D (2006) Interspersed clay. PCT Patent WO 2006/030075 (23 March 2006)

  47. Devaki T, Sathivel A, BalajiRaghavendran HR (2009) Stabilization of mitochondrial and microsomal function by polysaccharide of Ulva lactuca on D-Galactosamine induced hepatitis in rats. Chem-Biol Interact 177:83–88

    PubMed  CAS  Article  Google Scholar 

  48. Durand M, Beaumatin P, Bulman B, Bernalier A, Grivet JP, Serezat M, Gramet G, Lahaye M (1997) Fermentation of green alga sea-lettuce (Ulva sp) and metabolism of its sulphate by human colonic microbiota in a semi-continuous culture system. Reprod Nutr Dev 37:267–283

    PubMed  CAS  Article  Google Scholar 

  49. El-Baky HHA, Baz FKE, Baroty GSE (2009) Potential biological properties of sulphated polysaccharides extracted from the macroalgae Ulva lactuca L. Acad J Cancer Res 2:01–11

    Google Scholar 

  50. Elboutachfaiti R, Pheulpin P, Courtois B, Courtois-Sambourg J (2010) Method for enzyme cleavage of polysaccharides derived from green algae. US Patent US 2010/0261894 (14 October 2010)

  51. Elboutachfaiti R, Delattre C, Petit E, Michaud P (2011) Polyglucuronic acids: structures, functions and degrading enzymes. Carbohyd Polym 84:1–13

    CAS  Article  Google Scholar 

  52. Ertesvag H, Valla S (1998) Biosynthesis and applications of alginates. Polym Degrad Stabil 59:85–91

    CAS  Article  Google Scholar 

  53. Faury G, Molinari J, Rusova E, Mariko B, Raveaud S, Huber P, Velebny V, Robert AM, Robert L (2011) Receptors and aging: structural selectivity of the rhamnose-receptor on fibroblasts as shown by Ca2+-mobilization and gene-expression profiles. Arch Gerontol Geriat 53:106–112

    CAS  Article  Google Scholar 

  54. Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sá-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biot 79:889–900

    CAS  Article  Google Scholar 

  55. France M (2009) Methods and compositions for treating hot flashes. PCT Patent WO 2009/142745 (26 November 2009)

  56. Freitas MBD, Stadnik MJ (2012) Race-specific and ulvan-induced defense responses in bean (Phaseolus vulgaris) against Colletotrichum lindemuthianum. Physiol Mol Plant Pathol 78:8–13

    Article  CAS  Google Scholar 

  57. Ghisalberti C (2010) Enhanced treatment of joint and connective tissue damage. PCT Patent WO 2010/109256 (30 September 2010)

  58. Gosselin CC, Holt A, Lowe PA (1964) Polysaccharides of Enteromorpha species. J Chem Soc:5877–5880

    Google Scholar 

  59. Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL (2009) Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mater Res A 92A:1265–1272

    Google Scholar 

  60. Harada N, Maeda M (1998) Chemical structure of antithrombin-active rhamnan sulfate from Monostrom nitidum. Biosci Biotechnol Biochnol 62:1647–1652

    CAS  Article  Google Scholar 

  61. Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur J Phycol 38:277–294

    Article  Google Scholar 

  62. Hernández-Garibay E, Zertuche-González J, Pacheco-Ruíz I (2010) Isolation and chemical characterization of algal polysaccharides from the green seaweed Ulva clathrata (Roth) C. Agardh. J Appl Phycol 23:537–542

    Article  CAS  Google Scholar 

  63. Jani GK, Shah DP, Prajapati VD, Jain VC (2009) Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J Pharm Sci 4:309–323

    Google Scholar 

  64. Jaulneau V, Lafitte C, Jacquet C, Fournier S, Salamagne S, Briand X, Esquerré-Tugayé M-T, Dumas B (2010) Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway. J Biomed Biotechnol 2010:1–11. doi:10.1155/2010/525291

    Article  CAS  Google Scholar 

  65. Jensen A (1993) Present and future needs for algae and algal products. Hydrobiologia 260/261:15–23

    Article  Google Scholar 

  66. Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223

    PubMed  CAS  Article  Google Scholar 

  67. Kaeffer B, Benard C, Lahaye M, Blottiere HM, Cherbut C (1999) Biological properties of ulvan, a new source of green seaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelial tells. Planta Med 65:527–531

    PubMed  CAS  Article  Google Scholar 

  68. Khotimchenko YS, Khozhaenko EV, Khotimchenko MY, Kolenchenko EA, Kovalev VV (2010) Carrageenans as a new source of drugs with metal binding properties. Mar Drugs 8:1106–1121

    PubMed  CAS  Article  Google Scholar 

  69. Kim SK, Ravichandran YD, Khan SB, Kim YT (2008) Prospective of the cosmeceuticals derived from marine organisms. Biotechnol Bioproc Eng 13:511–523

    CAS  Article  Google Scholar 

  70. Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, Hasegawa T (2008) Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biot 84:657–661

    Google Scholar 

  71. Kreisman LSC, Friedman JH, Neaga A, Cobb BA (2007) Structure and function relations with a T-cell-activating polysaccharide antigen using circular dichroism. Glycobiology 17:46–55

    PubMed  CAS  Article  Google Scholar 

  72. Kuda T, Ikemori T (2009) Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chem 112:575–581

    CAS  Article  Google Scholar 

  73. Lahaye M (1991) Marine algae as sources of fibres: determination of soluble and insoluble dietary fibre contents in some sea vegetables. J Sci Food Agr 54:587–594

    CAS  Article  Google Scholar 

  74. Lahaye M (1998) NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohyd Res 314:1–12

    CAS  Article  Google Scholar 

  75. Lahaye M (2001) Chemistry and physico-chemistry of phycocolloids. Cah Biol Mar 42:137–157

    Google Scholar 

  76. Lahaye M, Axelos MAV (1993) Gelling properties of water-soluble polysaccharides from proliferating marine green seaweeds (Ulva spp.). Carbohyd Polym 22:261–265

    CAS  Article  Google Scholar 

  77. Lahaye M, Jegou D (1993) Chemical and physical-chemical characteristics of dietary fibres from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev. J Appl Phycol 5:195–200

    Article  Google Scholar 

  78. Lahaye M, Ray B (1996) Cell-wall polysaccharides from the marine green alga Ulva rigida (Ulvales, Chlorophyta)—NMR analysis of ulvan oligosaccharides. Carbohyd Res 283:161–173

    CAS  Article  Google Scholar 

  79. Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774

    PubMed  CAS  Article  Google Scholar 

  80. Lahaye M, Jegou D, Buleon A (1994) Chemical characteristics of insoluble glucans from the cell wall of the marine green alga Ulva lactuca (L.) Thuret. Carbohyd Res 262:115–125

    CAS  Article  Google Scholar 

  81. Lahaye M, Brunel M, Bonnin E (1997) Fine chemical structure analysis of oligosaccharides produced by an ulvan-lyase degradation of the water-soluble cell-wall polysaccharides from Ulva sp. (Ulvales, Chlorophyta). Carbohyd Res 304:325–333

    CAS  Article  Google Scholar 

  82. Lahaye M, Inizan F, Vigoureux J (1998) NMR analysis of the chemical structure of ulvan and of ulvan-boron complex formation. Carbohyd Polym 36:239–249

    CAS  Article  Google Scholar 

  83. Lahaye M, Cimadevilla EA-C, Kuhlenkamp R, Quemener B, Lognoné V, Dion P (1999) Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). J Appl Phycol 11:1–7

    CAS  Article  Google Scholar 

  84. Larraz E, Elvira C, Fernandez M, Parra J, Collia F, Lopez-Bravo A, Roman JS (2007) Self-curing acrylic formulations with applications in intervertebral disk restoration: drug release and biological behaviour. J Tissue Eng Regen M 1:120–127

    CAS  Article  Google Scholar 

  85. Lazaridou A, Biliaderis CG, Micha-Screttas M, Steele BR (2004) A comparative study on structure-function relations of mixed-linkage (1-3), (1-4) linear β-D-glucans. Food Hydrocolloid 18:837–855

    CAS  Article  Google Scholar 

  86. Leiro JM, Castro R, Arranz JA, Lamas J (2007) Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol 7:879–888

    PubMed  CAS  Article  Google Scholar 

  87. Linhardt RJ, Galliher PM, Cooney CL (1986) Polysaccharide lyases. Appl Biochem Biotechnol 12:135–176

    PubMed  CAS  Article  Google Scholar 

  88. Love J, Percival E (1964) Polysaccharides of green seaweed Codium fragile. 2. Water-soluble sulphated polysaccharides. J Chem Soc:3338–3345

  89. Luque de Castro MD, Garcia-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10

    CAS  Article  Google Scholar 

  90. Maeda M, Uehara T, Takeshita M (1992) Polysaccharide composition or polysaccharide having heparinoid activity, process for producing the same, and anticoagulant containing the same as active agent. Patent EP 0475383 (18 March 1992)

  91. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J Roy Soc Interface 4:999–1030

    CAS  Article  Google Scholar 

  92. Mao W, Zang X, Li Y, Zhang H (2006) Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. J Appl Phycol 18:9–14

    CAS  Article  Google Scholar 

  93. Massarelli I, Murgia L, Bianucci AM, Chiellini F, Chiellini E (2007) Understanding the selectivity mechanism of the human asialoglycoprotein receptor (ASGP-R) toward gal- and man-type ligands for predicting interactions with exogenous sugars. Int J Mol Sci 8:13–28

    CAS  Article  Google Scholar 

  94. Matsuo K-SY (2004) Novel chemical substance having morphogenetic and growth-accelerating activities. US Patent US 2004/0228854 (18 November 2004)

  95. McKinnell JP, Percival E (1962a) Acid polysaccharide from green seaweed, Ulva lactuca. J Chem Soc:2082–2083

  96. McKinnell JP, Percival E (1962b) Structural investigations on water-soluble polysaccharide of green seaweed Enteromorpha compressa. J Chem Soc:3141–3148

    Google Scholar 

  97. Mejía-Teniente L, Torres-Pacheco I, González-Chavira MM, Ocampo-Velazquez RV, Herrera-Ruiz G, Chapa-Oliver AM, Guevara-González RG (2010) Use of elicitors as an approach for sustainable agriculture. Afr J Biotechnol 9:9155–9162

    Google Scholar 

  98. Michaud P, Costa AD, Courtois B, Courtois J (2003) Polysaccharide lyases: recent developments as biotechnological tools. Crit Rev Biotechnol 23:233–266

    PubMed  CAS  Article  Google Scholar 

  99. Michel C, Macfarlane GT (1996) Digestive fates of soluble polysaccharides from marine macroalgae: involvement of the colonic microflora and physiological consequences for the host. J Appl Bacteriol 80:349–369

    PubMed  CAS  Article  Google Scholar 

  100. Montealegre JR, López C, Stadnik MJ, Henríquez JL, Herrera R, Polanco R, Piero RMD, Pérez LM (2010) Control of grey rot of apple fruits by biologically active natural products. Trop Plant Pathol 35:271–276

    Google Scholar 

  101. Morand P, Briand X (1996) Excessive growth of macroalgae: a symptom of environmental disturbance. Bot Mar 39:491–516

    CAS  Article  Google Scholar 

  102. Morelli A, Chiellini F (2010) Ulvan as a new type of biomaterial from renewable resources: functionalization and hydrogel preparation. Macromol Chem Phys 211:821–832

    CAS  Article  Google Scholar 

  103. Msuya F, Neori A (2008) Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks. J Appl Phycol 20:1021–1031

    CAS  Article  Google Scholar 

  104. Muto S, Niimura K, Oohara M, Oguchi Y, Matsunaga K, Hirose K, Kakuchi J, Sugita N, Furusho T, Yoshikumi C, Takahashi M (1992) Polysaccharides and antiviral drugs containing the same as active agent. US Patent US 5089481 (18 February 1992)

  105. O’Mara AM, O’Mara BJ (2009) Detoxification composition and method of detoxifying the body. US Patent US 2009/0060942 (5 March 2009)

  106. Oakes JM, Eyre BD, Middelburg JJ, Boschker HTS (2010) Composition, production, and loss of carbohydrates in subtropical shallow subtidal sandy sediments: rapid processing and long-term retention revealed by 13C-labeling. Limnol Oceanogr 55:2126–2138

    CAS  Article  Google Scholar 

  107. Oliveira JT, Reis RL (2011) Polysaccharide-based materials for cartilage tissue engineering applications. J Tissue Eng Regen M 5:421–436

    CAS  Article  Google Scholar 

  108. Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernandez J, Bozzo C, Navarrete E, Osorio A, Rios A (2006) Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem 99:98–104

    CAS  Article  Google Scholar 

  109. Ovodov YS (1975) The chemistry of glycuronoglycans. Chem Nat Compd 3:300–315

    Google Scholar 

  110. Paradossi G, Cavalieri F, Pizzoferrato L, Liquori AM (1999) A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva. Int J Biol Macromol 25:309–315

    PubMed  CAS  Article  Google Scholar 

  111. Paradossi G, Cavalieri F, Chiessi E (2002) A conformational study on the algal polysaccharide ulvan. Macromolecules 35:6404–6411

    CAS  Article  Google Scholar 

  112. Paulert R, Talamini V, Cassolato JEF, Duarte MER, Noseda MD, Smania A Jr, Stadnik MJ (2009) Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). J Plant Dis Protect 116:263–270

    CAS  Google Scholar 

  113. Pengzhan Y, Ning L, Xiguang L, Gefei Z, Quanbin Z, Pengcheng L (2003a) Antihyperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol Res 48:543–549

    PubMed  Article  CAS  Google Scholar 

  114. Pengzhan Y, Quanbin Z, Ning L, Zuhong X, Yanmei W, Zhi’en L (2003b) Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. J Appl Phycol 15:21–27

    Article  Google Scholar 

  115. Percival E, Wold JK (1963) Acid polysaccharide from green seaweed Ulva lactuca. 2. Site of ester sulphate. J Chem Soc:5459–5468

  116. Pereira RC, Scaranari M, Castagnola P, Grandizio M, Azevedo HS, Reis RL, Cancedda R, Gentili C (2009) Novel injectable gel (system) as a vehicle for human articular chondrocytes in cartilage tissue regeneration. J Tissue Eng Regen M 3:97–106

    CAS  Article  Google Scholar 

  117. Pomponi SA (1999) The bioprocess-technological potential of the sea. J Biotechnol 70:5–13

    CAS  Article  Google Scholar 

  118. Popa EG, Gomes ME, Reis RL (2011) Cell delivery systems using alginate–carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules 12:3952–3961

    PubMed  CAS  Article  Google Scholar 

  119. Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12

    PubMed  CAS  Article  Google Scholar 

  120. Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590

    PubMed  CAS  Article  Google Scholar 

  121. Qi H, Zhang Q, Zhao T, Chen R, Zhang H, Niu X, Li Z (2005a) Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol 37:195–199

    PubMed  CAS  Article  Google Scholar 

  122. Qi H, Zhao T, Zhang Q, Li Z, Zhao Z, Xing R (2005b) Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol 17:527–534

    CAS  Article  Google Scholar 

  123. Qi H, Zhang Q, Zhao T, Hu R, Zhang K, Li Z (2006) In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg Med Chem Lett 16:2441–2445

    PubMed  CAS  Article  Google Scholar 

  124. Qi H, Liu X, Ma J, Zhang Q, Li Z (2010) In vitro antioxidant activity of acetylated derivatives of polysaccharide extracted from Ulva pertusa (Cholorophta). J Med Plants Res 4:2445–2451

    CAS  Google Scholar 

  125. Quemener B, Lahaye M, Bobin-Dubigeon C (1997) Sugar determination in ulvans by a chemical-enzymatic method coupled to high performance anion exchange chromatography. J Appl Phycol 9:179–188

    CAS  Article  Google Scholar 

  126. Ranson M, Gutierrez G, Brault D, Le Deit H, Pages-Xatart-Pares X, Alfos C (2007) Product resulting from grafting of fatty chains to ulvans and use of said product as a surfactant. PCT Patent WO 2007/045795 (26 April 2007)

  127. Ray B (2006) Polysaccharides from Enteromorpha compressa: isolation, purification and structural features. Carbohyd Polym 66:408–416

    CAS  Article  Google Scholar 

  128. Ray B, Lahaye M (1995a) Cell-wall polysaccharides from the marine green alga Ulva rigida (Ulvales, Chlorophyta). Chemical structure of ulvan. Carbohyd Res 274:313–318

    CAS  Article  Google Scholar 

  129. Ray B, Lahaye M (1995b) Cell-wall polysaccharides from the marine green alga Ulva rigida (Ulvales, Chlorophyta). Extraction and chemical composition. Carbohyd Res 274:251–261

    CAS  Article  Google Scholar 

  130. Renn DW (1984) Agar and agarose: indispensable partners in biotechnology. Ind Eng Chem Res Dev 23:17–21

    CAS  Article  Google Scholar 

  131. Robic A, Sassi JF, Lahaye M (2008) Impact of stabilization treatments of the green seaweed Ulva rotundata (Chlorophyta) on the extraction yield, the physico-chemical and rheological properties of ulvan. Carbohyd Polym 74:344–352

    CAS  Article  Google Scholar 

  132. Robic A, Gaillard C, Sassi J-F, Lerat Y, Lahaye M (2009a) Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers 91:652–664

    PubMed  CAS  Article  Google Scholar 

  133. Robic A, Rondeau-Mouro C, Sassi JF, Lerat Y, Lahaye M (2009b) Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohyd Polym 77:206–216

    CAS  Article  Google Scholar 

  134. Robic A, Sassi J-F, Dion P, Lerat Y, Lahaye M (2009c) Seasonal variability of physicochemical and rheological properties of ulvan in two Ulva species (Chlorophyta) from the Brittany Coast. J Phycol 45:962–973

    CAS  Article  Google Scholar 

  135. Rochet V, Bernalier A (1997) Utilization of algal polysaccharides by human colonic bacteria, in axenic culture or in association with hydrogenotrophic microorganisms. Reprod Nutr Dev 37:221–229

    PubMed  CAS  Article  Google Scholar 

  136. Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, Reis RL (2009) Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules 10:1392–1401

    PubMed  Article  CAS  Google Scholar 

  137. Santos TC, Marques AP, Silva SS, Oliveira JM, Mano JF, Castro AG, Reis RL (2007) In vitro evaluation of the behaviour of human polymorphonuclear neutrophils in direct contact with chitosan-based membranes. J Biotechnol 132:218–226

    PubMed  CAS  Article  Google Scholar 

  138. Sathivel A, BalajiRaghavendran HR, Srinivasan P, Devaki T (2008) Anti-peroxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on D-galactosamine induced hepatitis in rats. Food Chem Toxicol 46:3262–3267

    PubMed  CAS  Article  Google Scholar 

  139. Schijf J, Ebling AM (2010) Investigation of the ionic strength dependence of Ulva lactuca acid functional group pKas by manual alkalimetric titrations. Environ Sci Technol 44:1644–1649

    PubMed  CAS  Article  Google Scholar 

  140. Siddhanta AK, Goswami AM, Ramavat BK, Mody KH, Mairh OP (2001) Water soluble polysaccharides of marine algal species of Ulva (Ulvales, Chlorophyta) of Indian waters. Indian J Mar Sci 30:166–172

    CAS  Google Scholar 

  141. Silva SS, Duarte ARC, Carvalho AP, Mano JF, Reis RL (2011) Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomater 7:1166–1172

    PubMed  CAS  Article  Google Scholar 

  142. Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262

    CAS  Article  Google Scholar 

  143. Takemura KM, Iljima KM, Tateno OY, Okamoto N, Fuse M (1986) Process for preparing L-rhamnose. US Patent US 4758283 (19 July 1988)

  144. Tavernier ML, Delattre C, Petit E, Michaud P (2008) β-(1,4)-polyglucuronic acids—an overview Open. Biotechnol J 2:73–86

    CAS  Google Scholar 

  145. Toskas G, Hund R-D, Laourine E, Cherif C, Smyrniotopoulos V, Roussis V (2011) Nanofibers based on polysaccharides from the green seaweed Ulva rigida. Carbohyd Polym 84:1093–1102

    CAS  Article  Google Scholar 

  146. van Rooijen N, Sanders A (1997) Elimination, blocking, and activation of macrophages: three of a kind? J Leukocyte Biol 62:702–709

    PubMed  Google Scholar 

  147. Warrand J (2006) Healthy polysaccharides—the next chapter in food products. Food Technol Biotechnol 44:355–370

    CAS  Google Scholar 

  148. Webster EA, Gadd GM (1996) Cadmium replaces calcium in the cell wall of Ulva lactuca. BioMetals 9:241–244

    CAS  Article  Google Scholar 

  149. Webster EA, Murphy AJ, Chudek JA, Gadd GM (1997) Metabolism-independent binding of toxic metals by Ulva lactuca: cadmium binds to oxygen-containing groups, as determined by NMR. BioMetals 10:105–117

    CAS  Article  Google Scholar 

  150. Weisberg E, Baumann L (2009) Cosmetic and drug regulation. In: Baumann L, Saghari S, Weisberg E (eds) Cosmetic dermatology, principles and practice, 2nd edn. McGraw-Hill, New York, pp 241–244

    Google Scholar 

  151. Wijesekara I, Pangestuti R, Kima S-K (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohyd Polym 84:14–21

    CAS  Article  Google Scholar 

  152. Williams PA (2009) Molecular interactions of plant and algal polysaccharides. Struct Chem 20:299–308

    CAS  Article  Google Scholar 

  153. Wong KH, Cheung PCK (2000) Nutritional evaluation of some subtropical red and green seaweeds: Part I—Proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71:475–482

    CAS  Article  Google Scholar 

  154. Wood CG (1974) Seaweed extracts: a unique ocean resource. J Chem Educ 51:449–452

    PubMed  CAS  Article  Google Scholar 

  155. Xiong S, Hou D, Huang N (2010) Isolation and antioxidant activity of acidic polysaccharide with water-solubility from Prunella Vulgaris Linn. 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), Chengdu, China:1–5

  156. Yamamoto M (1980) Physicochemical studies on sulfated polysaccharides extracted from seaweeds at various temperatures. Agr Biol Chem Tokyo 44:589–593

    CAS  Article  Google Scholar 

  157. Yang L, Zhang L-M (2009) Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohyd Polym 76:349–361

    CAS  Article  Google Scholar 

  158. Yapo BM (2011) Rhamnogalacturonan-I: a structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym Rev 51:391–413

    CAS  Article  Google Scholar 

  159. Zhang HJ, Mao WJ, Fang F, Li HY, Sun HH, Chen Y, Qi XH (2008) Chemical characteristics and anticoagulant activities of a sulfated polysaccharide and its fragments from Monostroma latissimum. Carbohyd Polym 71:428–434

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Anabela Alves is grateful for financial support from the Fundação para a Ciência e Tecnologia through the SFRH/BD/39359/2007 grant. This work was partially supported by the project IBEROMARE approved by the Operational Programme for Cross-border Cooperation: Spain–Portugal, 2007–2013 (POCTEP), with funding contribution through the European Regional Development Fund (ERDF co-funding) and POCTEP.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anabela Alves.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alves, A., Sousa, R.A. & Reis, R.L. A practical perspective on ulvan extracted from green algae. J Appl Phycol 25, 407–424 (2013). https://doi.org/10.1007/s10811-012-9875-4

Download citation

Keywords

  • Green algae
  • Ulvan
  • Polysaccharide
  • Biopolymer
  • Biomaterial