Skip to main content
Log in

Differential display analysis of cDNA fragments potentially involved in Nostoc flagelliforme response to osmotic stress

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstact

Nostoc flagelliforme is a terrestrial, highly drought-tolerant cyanobacterium. However, the molecular mechanism of its drought adaptation still remains little known. In this paper, we attempted to isolate those osmotic stress-regulated cDNA fragments by traditional differential display reverse transcriptase–polymerase chain reaction (DDRT-PCR). The PCR primers were chosen and evaluated from the reported HIP1D sequence-based primers and Ea/Es primers. The physiologically recovered samples were treated with 0.7 M sorbitol for 3 h. A total of 21 cDNA fragments were obtained by DDRT-PCR, and among them, 16 are up-regulated by osmotic stress. BlastX analyses showed that these up-regulated cDNA fragments are most related to ATPases, methyltransferases, transporters, glutathione synthase, signal transduction-associated components, and other unknown proteins. They are potentially important genes for N. flagelliforme to cope with drought stress since they are distinctly up-regulated by osmotic stress. In addition, five cDNA fragments are down-regulated by osmotic stress, such as the cDNA fragment of PSII protein. They may represent those genes involved in normal physiological processes and thus were inhibited by the osmotic stress. Taken together, the interpretation of the functional clues of these osmotic stress-responsive cDNA fragments has provided us an insight into the molecular mechanism of N. flagelliforme coping with the early phase of drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Murata N (2000) Inactivation of photosystems I and II in response to osmotic stress in Synechococcus. Contribution of water channels. Plant Physiol 122:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Apte SK (2001) Coping with salinity/water stress: cyanobacteria show the way. Proc Indian Natl Sci Acad (PINSA) B67:285–310

    Google Scholar 

  • Argueta C, Yuksek K, Patel R, Summers ML (2006) Identification of Nostoc punctiforme akinete-expressed genes using differential display. Mol Microbiol 61:748–757

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Vaulot D, Amin P, Takahashi AW, Grossman AR (2000) Isolation of regulated genes of the unicellular cyanobacterium Synechocystis sp. strain PCC6803 by differential display. J Bacteriol 182:5692–5699

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt-Oliveira MC, Moura AN, Gouvêa-Barros S, Pinto E (2007) HIP1 DNA fingerprinting in Microcystis panniformis (Chroococcales, Cyanobacteria). Phycologia 46:3–9

    Article  Google Scholar 

  • Bordenave S, Goni-Urriza M, Caumette P, Duran R (2009) Differential display analysis of cDNA involved in microbial mats response after heavy fuel oil contamination. J Microbial Biochem Technol 1:1–4

    CAS  Google Scholar 

  • Chia JS, Lee YY, Huang PT, Chen JY (2001) Identification of stress-responsive genes in Streptococcus mutans by differential display reverse transcription-PCR. Infect Immun 69:2493–2501

    Article  PubMed  CAS  Google Scholar 

  • Choi KH, Heath RJ, Rock CO (2000) β-Ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J Bacteriol 182:365–370

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Ezhilarasi A, Anand N (2010) Fingerprinting of repetitive DNA sequences in the genus Anabaena using PCR-based techniques. Afr J Microbiol Res 4:590–598

    CAS  Google Scholar 

  • Fislage R, Berceanu M, Humboldt Y, Wendt M, Oberender H (1997) Primer design for a prokaryotic differential display RT-PCR. Nucleic Acids Res 25:1830–1835

    Article  PubMed  CAS  Google Scholar 

  • Fleming JT, Yao WH, Sayler GS (1998) Optimization of differential display of prokaryotic mRNA: application to pure culture and soil microcosms. Appl Environ Microbiol 64:3698–3706

    PubMed  CAS  Google Scholar 

  • Gao KS (1998) Chinese studies on the edible blue green alga, Nostoc flagelliforme: a review. J Appl Phycol 10:37–49

    Article  Google Scholar 

  • Gao X, Liu K, Qiu BS (2011) An investigation on the genetic background of Nostoc flagelliforme by similarity analysis of its partial genomic DNA and phylogenetic comparison of deduced related species. Acta Physiol Plant 33:1301–1308

    Article  Google Scholar 

  • Gill RT, Valdes JJ, Bentley WE (1999) Reverse transcription-PCR differential display analysis of Escherichia coli global gene regulation in response to heat shock. Appl Environ Microbiol 65:5386–5393

    PubMed  CAS  Google Scholar 

  • Joset F, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 96:738–744

    Article  CAS  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290:339–348

    Article  PubMed  CAS  Google Scholar 

  • Katoh H, Asthana RK, Ohmori M (2004) Gene expression in the cyanobacterium Anabaena sp. PCC 7120 under desiccation. Microb Ecol 47:164–174

    Article  PubMed  CAS  Google Scholar 

  • Klimašauskas S, Weinhold E (2007) A new tool for biotechnology: AdoMet-dependent methyltransferases. Trends Biotechnol 25:99–104

    Article  PubMed  Google Scholar 

  • Kotani H, Tabata S (1998) Lessons from sequencing of the genome of a unicellular cyanobacterium, Synechocystis sp. PCC6803. Annu Rev Plant Physiol Plant Mol Biol 49:151–171

    Article  PubMed  CAS  Google Scholar 

  • Liu YH, Yu L, Ke WT, Gao X, Qiu BS (2010) Photosynthetic recovery of Nostoc flagelliforme (Cyanophyceae) upon rehydration after 2 years and 8 years dry storage. Phycologia 49:429–437

    Article  CAS  Google Scholar 

  • Lu LD, Sun Q, Fan XY, Zhong Y, Yao YF, Zhao GP (2010) Mycobacterial MazG is a novel NTP pyrophosphohydrolase involved in oxidative stress response. J Biol Chem 285:28076–28085

    Article  PubMed  CAS  Google Scholar 

  • Masuda T (2008) Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth Res 96:121–143

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  • Potts M (2001) Desiccation tolerance: a simple process? Trends Microbiol 9:553–559

    Article  PubMed  CAS  Google Scholar 

  • Qiu BS, Zhang AH, Liu ZL (2003) Oxidative stress in Nostoc flagelliforme subjected to desiccation and effects of exogenous oxidants on its photosynthetic recovery. J Appl Phycol 15:445–450

    Article  Google Scholar 

  • Qiu BS, Zhang AH, Liu ZL, Gao KS (2004) Studies on the photosynthesis of terrestrial cyanobacterium Nostoc flagelliforme subjected to desiccation and subsequent rehydration. Phycologia 43:521–528

    Article  Google Scholar 

  • Satoh K, Hirai M, Nishio J, Yamaji Y, Kashino Y, Koike H (2002) Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune. Plant Cell Physiol 43:170–176

    Article  PubMed  CAS  Google Scholar 

  • Scherer S, Zhong ZP (1991) Desiccation independence of terrestrial Nostoc commune ecotypes (Cyanobacteria). Microbiol Ecol 22:271–283

    Article  Google Scholar 

  • Scherer S, Ernst A, Chen TW, BiJger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia 62:418–423

    Article  Google Scholar 

  • Shirkey B, McMaster NJ, Smith SC, Wright DJ, Rodriguez H, Jaruga P, Birincioglu M, Helm RF, Potts M (2003) Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Res 31:2995–3005

    Article  PubMed  CAS  Google Scholar 

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 11:7327–7333

    Article  Google Scholar 

  • Tang JN, Zhao M, Zhang DM, Zhang JC, Nie WG (2005) Water physiological characteristics of Nostoc flagelliforme. Acta Bot Boreal–Occident Sin 25:236–243

    CAS  Google Scholar 

  • Tausz M, Šircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Bhuiyan MN, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci U S A 102:1318–1323

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Xu YN, Jiang GZ, Li LB, Kuang TY (2000) Lipids and their fatty acid composition in Nostoc flagelliforme cells. Acta Bot Sin 42:1263–1266

    CAS  Google Scholar 

  • Wang G, Chen K, Chen LHuC, Zhang D, Liu Y (2008) The involvement of the antioxidant system in protection of desert cyanobacterium Nostoc sp. against UV-B radiation and the effects of exogenous antioxidants. Ecotoxicol Environ Saf 69:150–157

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Shen R, Zhang X, Wang Q (2010) Molecular cloning and characterization of maltooligosyltrehalose synthase gene from Nostoc flagelliforme. J Microbiol Biotechnol 20:579–586

    PubMed  CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura H, Ikeuchi M, Ohmori M (2006) Up-regulated genes expression during dehydration in a terrestrial cyanobacterium, Nostoc sp. strain HK-01. Microbes Environ 21:129–133

    Article  Google Scholar 

  • Zhang J, Inouye M (2002) MazG, a nucleoside triphosphate pyrophosphohydrolase, interacts with Era, an essential GTPase in Escherichia coli. J Bacteriol 184:5323–5329

    Article  PubMed  CAS  Google Scholar 

  • Zhao XM, Bi YH, Chen L, Hu S, Hu ZY (2008) Responses of photosynthetic activity in the drought-tolerant cyanobacterium, Nostoc flagelliforme to rehydration at different temperature. J Arid Environ 72:370–377

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (no. 200805111016) and the National Natural Science Foundation of China (no. 30800072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Gao.

Additional information

Yinghui Liu and Ke Liu are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liu, K., Ai, Y. et al. Differential display analysis of cDNA fragments potentially involved in Nostoc flagelliforme response to osmotic stress. J Appl Phycol 24, 1487–1494 (2012). https://doi.org/10.1007/s10811-012-9806-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9806-4

Keywords

Navigation