Journal of Applied Phycology

, Volume 23, Issue 3, pp 543–597 | Cite as

Bioactive compounds in seaweed: functional food applications and legislation

  • Susan Løvstad HoldtEmail author
  • Stefan Kraan


Seaweed is more than the wrap that keeps rice together in sushi. Seaweed biomass is already used for a wide range of other products in food, including stabilising agents. Biorefineries with seaweed as feedstock are attracting worldwide interest and include low-volume, high value-added products and vice versa. Scientific research on bioactive compounds in seaweed usually takes place on just a few species and compounds. This paper reviews worldwide research on bioactive compounds, mainly of nine genera or species of seaweed, which are also available in European temperate Atlantic waters, i.e. Laminaria sp., Fucus sp., Ascophyllum nodosum, Chondrus crispus, Porphyra sp., Ulva sp., Sargassum sp., Gracilaria sp. and Palmaria palmata. In addition, Undaria pinnatifida is included in this review as this is globally one of the most commonly produced, investigated and available species. Fewer examples of other species abundant worldwide have also been included. This review will supply fundamental information for biorefineries in Atlantic Europe using seaweed as feedstock. Preliminary selection of one or several candidate seaweed species will be possible based on the summary tables and previous research described in this review. This applies either to the choice of high value-added bioactive products to be exploited in an available species or to the choice of seaweed species when a bioactive compound is desired. Data are presented in tables with species, effect and test organism (if present) with examples of uses to enhance comparisons. In addition, scientific experiments performed on seaweed used as animal feed are presented, and EU, US and Japanese legislation on functional foods is reviewed.


High value-added products Health promotion Biorefinery Nutraceutical Pharmaceutical Feed supplement 


  1. Aisa Y, Miyakawa Y, Nakazato T, Shibata H, Saito K, Ikeda Y, Kizaki M (2005) Fucoidan induces apoptosis of human HS-Sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am J Hematol 78:7–14Google Scholar
  2. Alekseyenko TV, Zhanayeva SY, Venediktova AA, Zvyagintseva TN, Kuznetsova TA, Besednova NN, Korolenko TA (2007) Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk sea Fucus evanescens brown alga. Bull Exp Biol Med 143:730–732PubMedCrossRefGoogle Scholar
  3. Almela C, Algora S, Benito V, Clemente MJ, Devesa V, Suner MA, Velez D, Montoro R (2002) Heavy metal, total arsenic, and inorganic arsenic contents of algae food products. J Agric Food Chem 50:918–923PubMedCrossRefGoogle Scholar
  4. Amano H, Kakinuma M, Coury DA, Ohno H, Hara T (2005) Effect of a seaweed mixture on serum lipid level and platelet aggregation in rats. Fish Sci 71:1160–1166CrossRefGoogle Scholar
  5. Andersson L, Lidgren G, Bohlin L, Magni L, Ogren S, Afzelius L (1983) Studies of Swedish marine organisms. 1. Screening of biological-activity. Act Pharm Suec 20:401–414Google Scholar
  6. Aneiros A, Garateix A (2004) Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J Chromatogr B Analyt Technol Biomed Life Sci 803:41–53PubMedCrossRefGoogle Scholar
  7. Arasaki S, Arasaki T (1983) Low calorie, high nutrition vegetables from the sea to help you look and feel better. Japan Publications, Tokyo, 196 ppGoogle Scholar
  8. Archer GS (2005) Reducing stress in sheep by feeding the seaweed Ascophyllum nodosum. Texas A&M University, 129 ppGoogle Scholar
  9. Arnold TM, Targett NM (2000) Evidence for metabolic turnover of polyphenolics in tropical brown algae. J Chem Ecol 26:1393–1410CrossRefGoogle Scholar
  10. Arts ICW, Hollman PCH, De Mesquita HBB, Feskens EJM, Kromhout D (2001) Dietary catechins and epithelial cancer incidence: the Zutphen Elderly Study. Int J Cancer 92:298–302PubMedCrossRefGoogle Scholar
  11. Astorg P (1997) Food carotenoids and cancer prevention: an overview of current research. Trends Food Sci Technol 8:406–413CrossRefGoogle Scholar
  12. Athukorala Y, Lee KW, Kim SK, Jeon YJ (2007) Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour Technol 98:1711–1716PubMedCrossRefGoogle Scholar
  13. Augier H, Santimone M (1978) Contribution to study of composition in total nitrogen, proteins and proteinic amino-acids of different parts of thallus of Laminaria digitata (Huds) Lamour in scope of its industrial and agricultural exploitation. Bull Soc Phyc France 110:19–28Google Scholar
  14. Baardseth E (1958) A method of estimating the physode content in brown algae-reprint of report 20. Papers Presented at the Third International Seaweed Symposium by the Staff of the Norwegian Institute of Seaweed Research, Norwegian Institute of Seaweed Research, Trondheim. Report 20, pp 1–6Google Scholar
  15. Baardseth E, Haug A (1953) Individual variation of some constituents in brown algae, and reliability of analytical results. Norwegian Institute of Seaweed Research, Akademisk Trykningssentral, Oslo. Report 2, pp 1–23Google Scholar
  16. Bansemir A, Blume M, Schröder S, Lindequist U (2006) Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252:79–84CrossRefGoogle Scholar
  17. Barbarino E, Lourenço S (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460CrossRefGoogle Scholar
  18. Bartsch I, Wienke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R et al (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86CrossRefGoogle Scholar
  19. Benvegnu T, Sassi J-F (2010) Oligomannuronates from seaweeds as renewable sources for the development of green surfactants. Top Curr Chem 294:143–164Google Scholar
  20. Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13:29R–40RPubMedCrossRefGoogle Scholar
  21. Besada V, Andrade JM, Schultze F, Gonzalez JJ (2009) Heavy metals in edible seaweeds commercialised for human consumption. J Mar Syst 75:305–313CrossRefGoogle Scholar
  22. Bhakuni DS, Rawat DS (2005) Bioactive metabolites of marine algae, fungi and bacteria. In: Bioactive marine natural products. Co-published by Anamaya Publishers and Springer, New Delhi, pp 1–25Google Scholar
  23. Bhaskar N, Hosokawa M, Miyashita K (2004) Comparative evaluation of fatty acid composition of different Sargassum (Fucales, Phaeophyta) species harvested from temperature and tropical waters. J Aquat Food Prod Technol 3:53–70Google Scholar
  24. Bird KT, Chiles TC, Longley RE, Kendrick AF, Kinkema MD (1993) Agglutinins from marine macroalgae of the southeastern United States. J Appl Phycol 5:213–218CrossRefGoogle Scholar
  25. Bitencourt FD, Figueiredo JG, Mota MRL, Bezerra CCR, Silvestre PP, Nascimento VMR, KS SAH, Nagano CS, Saker-Sampaio S et al (2008) Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. Naunyn-Schmiedebergs Arch Pharmacol 377:139–148CrossRefGoogle Scholar
  26. Bixler HJ, Porse H (2010) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol. doi: 10.1007/s10811-010-9529-3
  27. Black WAP (1950) The seasonal variation in the cellulose content of the common Scottish Laminariaceae and Fucaceae. J Mar Biol Assoc UK 29:379–387CrossRefGoogle Scholar
  28. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2003) Marine natural products. Nat Prod Rep 20:1–48PubMedCrossRefGoogle Scholar
  29. Bobin-Dubigeon C, Lahaye M, Barry JL (1997) Human colonic bacterial degradability of dietary fibres from sea-lettuce (Ulva sp.). J Sci Food Agric 73:149–159CrossRefGoogle Scholar
  30. Bogentoff CB (1981) Antacid composition for neutralizing stomach acid. Germany Patent No. 2,722,484Google Scholar
  31. Borgo E (1984) Pharmaceutical compositions for the treatment of gastric hyperacidity, gastritis and gastroduodenal ulcers. Canada Patent No. 1,176,984Google Scholar
  32. Boubonari T, Malea P, Kevrekidis T (2008) The green seaweed Ulva rigida as a bioindicator of metals (Zn, Cu, Pb and Cd) in a low-salinity coastal environment. Bot Mar 51:472–484CrossRefGoogle Scholar
  33. Brito I, Cueto M, Díaz-Marrero AR, Darias J, Martin AS (2002) Oxachamigrenes, new halogenated sesquiterpenes from Laurencia obtusa. J Nat Prod 65:946–948PubMedCrossRefGoogle Scholar
  34. Bruhn A, Rasmussen MB, Olesen B, Worm T (2008) Kommerciel dyrkning af carrageentang (Chondrus crispus) i danske farvande. Danmarks Miljøundersøgelser, Silkeborg, 62 pp (in Danish)Google Scholar
  35. Buck CB, Thompson CD, Roberts JN, Muller M, Lowy DR, Schiller JT (2006) Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2:671–680CrossRefGoogle Scholar
  36. Burtin P (2003) Nutritional value of seaweeds. Electron J Environ Agric Food Chem 2:498–503Google Scholar
  37. Butler A, Carter-Franklin JN (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep 21:180–188PubMedCrossRefGoogle Scholar
  38. Caceres PJ, Carlucci MJ, Damonte EB, Matsuhiro B, Zuniga EA (2000) Carrageenans from Chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity. Phytochemistry 53:81–86PubMedCrossRefGoogle Scholar
  39. Cann SAH (2006) Hypothesis: dietary iodine intake in the etiology of cardiovascular disease. J Am Coll Nutr 25:1–11Google Scholar
  40. Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P et al (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C: Toxicol Pharmacol 146:60–78CrossRefGoogle Scholar
  41. Carlucci MJ, Pujol CA, Ciancia M, Noseda MD, Matulewicz MC, Damonte EB, Cerezo AS (1997) Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int J Biol Macromol 20:97–105PubMedCrossRefGoogle Scholar
  42. Carthew P (2002) Safety of carrageenan in foods. Environ Health Perspect 110:A176PubMedCrossRefGoogle Scholar
  43. Carvalho MDT, Harada LM, Gidlund M, Ketelhuth DFJ, Boschcov P, Quintao ECR (2002) Macrophages take up triacylglycerol-rich emulsions at a faster rate upon co-incubation with native and modified LDL: an investigation on the role of natural chylomicrons in atherosclerosis. J Cell Biochem 84:309–323PubMedCrossRefGoogle Scholar
  44. Cérantola S, Breton F, Ar Gall E, Deslandes E (2006) Co-occurrence and antioxidant activities of fucol and fucophlorethol classes of polymeric phenols in Fucus spiralis. Bot Mar 49:347–351CrossRefGoogle Scholar
  45. Cha SH, Ahn GN, Heo SJ, Kim KN, Lee KW, Song CB, Cho SK, Jeon YJ (2006) Screening of extracts from marine green and brown algae in Jeju for potential marine angiotensin-I converting enzyme (ACE) inhibitory activity. J Korean Soc Food Sci Nutr 35:307–314CrossRefGoogle Scholar
  46. Chapman VJ (1970) Seaweeds and their uses, 2nd edn. Methuen, London, 304 ppGoogle Scholar
  47. Chen H-M, Zheng L, Yan X-J (2005) The preparation and bioactivity research of agaro-oligosaccharides. Food Technol Biotechnol 43:29–36Google Scholar
  48. Chernomorsky S, Segelman A, Poretz RD (1999) Effect of dietary chlorophyll derivatives on mutagenesis and tumor cell growth. Tera Carc Mut 19:313–322CrossRefGoogle Scholar
  49. Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher AM, Boisson-Vidal C (1999) Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr Res 319:154–165PubMedCrossRefGoogle Scholar
  50. Cho SH, Kang SE, Cho JY, Kim AR, Park SM, Hong YK, Ahn DH (2007) The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J Med Food 10:479–485PubMedCrossRefGoogle Scholar
  51. Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS (1999) Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin–alginate sponge. Biomaterials 20:409–417PubMedCrossRefGoogle Scholar
  52. Chopin T, Gallant T, Davison I (1995) Phosphorus and nitrogen nutrition in Chondrus crispus (Rhodophyta): effects on total phosphorus and nitrogen content, carrageenan production, and photosynthetic pigments and metabolism. J Phycol 31:283–293CrossRefGoogle Scholar
  53. Chopin T, Sharp G, Belyea E, Semple R, Jones D (1999) Open-water aquaculture of the red alga Chondrus crispus in Prince Edward Island, Canada. Hydrobiologia 398/399:417–425CrossRefGoogle Scholar
  54. Chronakis IS, Galatanu AN, Nylander T, Lindman B (2000) The behaviour of protein preparations from blue-green algae (Spirulina platensis strain Pacifica) at the air/water interface. Colloid Surface Physicochem Eng Aspect 173:181–192CrossRefGoogle Scholar
  55. Cloughley G, Burbridge E, Kraan S, Guiry MD, Smyth PPA (2008) Iodine uptake and efflux by macroalgae. 11th International Conference on Applied Phycology, Galway, Ireland, p 81Google Scholar
  56. Connan S, Goulard F, Stiger V, Deslandes E, Ar Gall E (2004) Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot Mar 47:410–416CrossRefGoogle Scholar
  57. Connan S, Delisle F, Deslandes E, Ar Gall E (2006) Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar 49:39–46CrossRefGoogle Scholar
  58. Constantinides P, Cairns A, Werner A (1954) Antilipemic activity of sulfated polysaccharides. Arch Int Pharmacodyn Thér 99:334–345PubMedGoogle Scholar
  59. Cornish ML, Garbary DJ (2010) Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25:000–000. doi: 10.4490/algae.2010.25.4.000 Google Scholar
  60. Craigie JS (2010) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol. doi: 10.1007/z10811-010-9560-4
  61. Cruz-Uribe O, Cheney DP, Rorrer GL (2007) Comparison of TNT removal from seawater by three marine macroalgae. Chemosphere 67:1469–1476PubMedCrossRefGoogle Scholar
  62. Dannhardt G, Kiefer W (2001) Cyclooxygenase inhibitors—current status and future prospects. Eur J Med Chem 36:109–126PubMedCrossRefGoogle Scholar
  63. Darias J, Rovirosa J, San Martin A, Diaz AR, Dorta E, Cueto M (2001) Furoplocamioids A-C, novel polyhalogenated furanoid monoterpenes from Plocamium cartilagineum. J Nat Prod 64:1383–1387PubMedCrossRefGoogle Scholar
  64. Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899CrossRefGoogle Scholar
  65. Dembitsky VM, Rozentsvet OA (1990) Phospholipid composition of some marine red algae. Phytochemistry 29:3149–3152CrossRefGoogle Scholar
  66. Dembitsky VM, Srebnik M (2002) Natural halogenated fatty acids: their analogues and derivatives. Prog Lipid Res 41:315–367PubMedCrossRefGoogle Scholar
  67. Dembitsky VM, Rozentsvet OA, Pechenkina EE (1990) Glycolipids, phospholipids and fatty-acids of brown-algae species. Phytochemistry 29:3417–3421CrossRefGoogle Scholar
  68. Dembitsky VM, Pechenkinashubina EE, Rozentsvet OA (1991) Glycolipids and fatty-acids of some seaweeds and marine grasses from the Black Sea. Phytochemistry 30:2279–2283CrossRefGoogle Scholar
  69. Deville C, Damas J, Forget P, Dandrifosse G, Peulen O (2004) Laminarin in the dietary fibre concept. J Sci Food Agric 84:1030–1038CrossRefGoogle Scholar
  70. Deville C, Gharbi M, Dandrifosse G, Peulen O (2007) Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J Sci Food Agric 87:1717–1725CrossRefGoogle Scholar
  71. Dierick N, Ovyn A, De Smet S (2009) Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. J Sci Food Agric 89:584–594CrossRefGoogle Scholar
  72. Dietrich CP, Farias GGM, de Abreu LRD, Leite EL, da Silva LF, Nader HB (1995) A new approach for the characterization of polysaccharides from algae: presence of four main acidic polysaccharides in three species of the class Phaeophyceae. Plant Sci 108:143–153CrossRefGoogle Scholar
  73. Doh-ura K, Kuge T, Uomoto M, Nishizawa K, Kawasaki Y, Iha M (2007) Prophylactic effect of dietary seaweed fucoidan against enteral prion infection. Antimicrob Agents Chemother 51:2274–2277PubMedCrossRefGoogle Scholar
  74. Doi K, Tsuji K (1998) Dietary fibers: basics and critics. Asakura Shoten, Tokyo, 426 pp (in Japanese)Google Scholar
  75. Douady D, Rousseau B, Caron L (1994) Fucoxanthin-chlorophyll a/c light-harvesting complexes of Laminaria saccharina: partial amino acid sequences and arrangement in thylakoid membranes. Biochemistry 33:3165–3170PubMedCrossRefGoogle Scholar
  76. Doyle JW, Roth TP, Smith RM, Li YQ, Dunn RM (1996) Effect of calcium alginate on cellular wound healing processes modeled in vitro. J Biomed Mater Res 32:561–568PubMedCrossRefGoogle Scholar
  77. Dubber D, Harder T (2008) Extracts of Ceramium rubrum, Mastocarpus stellatus and Laminaria digitata inhibit growth of marine and fish pathogenic bacteria at ecologically realistic concentrations. Aquaculture 274:196–200CrossRefGoogle Scholar
  78. Dumelod BD, Ramirez RPB, Tiangson CLP, Barrios EB, Panlasigui LN (1999) Carbohydrate availability of arroz caldo with lambda-carrageenan. Int J Food Sci Nutr 50:283–289PubMedCrossRefGoogle Scholar
  79. Durcan J, Cave R, Tyrrell L, McGovern, Stengel DB (2010) Arsenic levels in selected red, green and brown macroalgae from Western Ireland. XX Seaweed Symposium, p 121Google Scholar
  80. Durig J, Bruhn T, Zurborn KH, Gutensohn K, Bruhn HD, Beress L (1997) Anticoagulant fucoidan fractions from Fucus vesiculosus induce platelet activation in vitro. Thromb Res 85:479–491PubMedCrossRefGoogle Scholar
  81. Dworjanyn SA, Pirozzi I, Liu W (2007) The effect of the addition of algae feeding stimulants to artificial diets for the sea urchin Tripneustes gratilla. Aquaculture 273:624–633CrossRefGoogle Scholar
  82. European Advisory Services (EAS) (2008) Marketing food supplements, fortified and functional foods in Europe. Legislation and practice 2008, 250 ppGoogle Scholar
  83. EAS (2009) Regulation 1170/2009 amending Directive 2002/46/EC and Regulation 1925/2006 as regards the lists of vitamin and minerals and their forms that can be added to foods, including food supplements., accessed 6 April 2010
  84. Ellouali M, Boissonvidal C, Durand P, Jozefonvicz J (1993) Antitumor-activity of low-molecular-weight fucans extracted from brown seaweed Ascophyllum nodosum. Anticancer Res 13:2011–2019PubMedGoogle Scholar
  85. Ennamany R, Saboureau D, Mekideche N, Creppy EE (1998) SECMA 1 (R), a mitogenic hexapeptide from Ulva algeae modulates the production of proteoglycans and glycosaminoglycans in human foreskin fibroblast. Hum Exp Toxicol 17:18–22PubMedCrossRefGoogle Scholar
  86. Enoki T, Sagawa H, Tominaga T, Nishiyama E, Komyama N, Sakai T, Yu FG, Ikai K, Kato I (2003) Drugs, foods or drinks with the use of algae-derived physiologically active substances. US Patent 0,105,029Google Scholar
  87. Ergün S, Soyutürk M, Güroy B, Güroy D, Merrifield D (2008) Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis ániloticus) at two levels of dietary lipid. Aquac Int 17:355–361CrossRefGoogle Scholar
  88. EU (2008) Kommisionens forordning (EF) Nr. 629/2008, af 2. juli 2008, om ændring af forordning (EF) nr. 1881/2006 om fastsættelse af grænseværdier for bestemte forurenende stoffer i fødevarer. Den Europæiske Unions Tidende, pp 6–9 (in Danish)Google Scholar
  89. European Commission (1997) Novel Food Catalogue. on December 14 2010
  90. Fan D, Hodges DM, Zhang J, Kirby CW, Ji X, Locke SJ, Critchley AT, Prithiviraj B (2011) Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chem 124:195–202Google Scholar
  91. FAO (2008) FAO statistics. http://wwwfaoorg/figis/servlet/static?dom=root&xml=aquaculture/indexxml, accessed 2 February 2009
  92. Farvin KHS, Holdt SL, Jacobsen C (2010) Phenolic composition and in vitro antioxidant activities of selected species of seaweeds from Danish coast. 101st American Oil Chemists Society Annual Meeting and Expo, Phoenix, Arizona. May 16–19Google Scholar
  93. Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49PubMedCrossRefGoogle Scholar
  94. Fernandez LE, Valiente OG, Mainardi V, Bello JL, Velez H, Rosado A (1989) Isolation and characterization of an antitumor active agar-type polysaccharide of Gracilaria dominguensis. Carbohydr Res 190:77–83PubMedCrossRefGoogle Scholar
  95. Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28CrossRefGoogle Scholar
  96. Fleurence J (2004) Seaweed proteins. In: Yada RY (ed) Proteins in food processing. Woodhead Publishing, Cambridge, pp 197–213CrossRefGoogle Scholar
  97. Fleurence J, LeCoeur C, Mabeau S, Maurice M, Landrein A (1995) Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. J Appl Phycol 7:577–582CrossRefGoogle Scholar
  98. Fleury N, Lahaye M (1991) Chemical and physicochemical characterization of fibers from Laminaria digitata (Kombu Breton)—a physiological approach. J Sci Food Agric 55:389–400CrossRefGoogle Scholar
  99. Flodin C, Helidoniotis F, Whitfield FB (1999) Seasonal variation in bromophenol content and bromoperoxidase activity in Ulva lactuca. Phytochemistry 51:135–138CrossRefGoogle Scholar
  100. Foster GG, Hodgson AN (1998) Consumption and apparent dry matter digestibility of six intertidal macroalgae by Turbo sarmaticus (Mollusca: Vetigastropoda: Turbinidae). Aquaculture 167:211–227CrossRefGoogle Scholar
  101. Foti MC (2007) Antioxidant properties of phenols. J Pharm Pharmacol 59:1673–1685PubMedCrossRefGoogle Scholar
  102. Francesconi KA, Edmonds JS (1996) Arsenic and marine organisms. Adv Inorg Chem 44:147–189CrossRefGoogle Scholar
  103. Freile-Pelegrín Y, Morales JL (2004) Antibacterial activity in marine algae from the coast of Yucatan, Mexico. Bot Mar 47:140–146CrossRefGoogle Scholar
  104. Freile-Pelegrín Y, Robledo D (1997) Effects of season on the agar content and chemical characteristics of Gracilaria cornea from Yucatan, Mexico. Bot Mar 40:285–290CrossRefGoogle Scholar
  105. Fujiwara-Arasaki T, Mino N, Kuroda M (1984) The protein value in human nutrition of edible marine algae in Japan. Hydrobiologia 116/117:513–516CrossRefGoogle Scholar
  106. Fuller RW, Cardellina JH, Kato Y, Brinen LS, Clardy J, Snader KM, Boyd MR (1992) A pentahalogenated monoterpene from the red alga Portieria hornemannii produces a novel cytotoxicity profile against a diverse panel of human tumor cell lines. J Med Chem 35:3007–3011PubMedCrossRefGoogle Scholar
  107. Funahashi H, Imai T, Tanaka Y, Tsukamura K, Hayakawa Y, Kikumori T, Mase T, Itoh T, Nishikawa M, Hayashi H et al (1999) Wakame seaweed suppresses the proliferation of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in rats. Jpn J Cancer Res 90:922–927PubMedGoogle Scholar
  108. Funahashi H, Imai T, Mase T, Sekiya M, Yokoi K, Hayashi H, Shibata A, Hayashi T, Nishikawa M, Suda N et al (2001) Seaweed prevents breast cancer? Jpn J Cancer Res 92:483–487PubMedGoogle Scholar
  109. Gahan DA, Lynch MB, Callan JJ, O’Sullivan JT, O’Doherty JV (2009) Performance of weanling piglets offered low-, medium- or high-lactose diets supplemented with a seaweed extract from Laminaria spp. Animal 3:24–31CrossRefGoogle Scholar
  110. Galland-Irmouli AV, Fleurence J, Lamghari R, Luçon M, Rouxel C, Barbaroux O, Bronowicki JP, Villaume C, Guéant JL (1999) Nutritional value of proteins from edible seaweed Palmaria palmata (dulse). J Nutr Biochem 10:353–359PubMedCrossRefGoogle Scholar
  111. Ganesan P, Kumar CS, Bhaskar N (2008) Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresour Technol 99:2717–2723PubMedCrossRefGoogle Scholar
  112. Garbisa S, Sartor L, Biggin S, Salvato B, Benelli R, Albini A (2001) Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer 91:822–832PubMedCrossRefGoogle Scholar
  113. Gardiner GE, Campbell AJ, O’Doherty JV, Pierce E, Lynch PB, Leonard FC, Stanton C, Ross RP, Lawlor PG (2008) Effect of Ascophyllum nodosum extract on growth performance, digestibility, carcass characteristics and selected intestinal microflora populations of grower-finisher pigs. Anim Feed Sci Technol 141:259–273CrossRefGoogle Scholar
  114. Geiszinger A, Goessler W, Pedersen SN, Francesconi KA (2001) Arsenic biotransformation by the brown macroalga Fucus serratus. Environ Toxicol Chem 20:2255–2262PubMedGoogle Scholar
  115. Gessner F (1971) Wasserpermeabilität und Photosynthese bei marinen Algen. Bot Mar 14:29–31CrossRefGoogle Scholar
  116. Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B (2009) Focus on antivirally active sulfated polysaccharides: from structure–activity analysis to clinical evaluation. Glycobiology 19:2–15PubMedCrossRefGoogle Scholar
  117. Ginzberg A, Cohen M, Sod-Moriah UA, Shany S, Rosenshtrauch A, Arad S (2000) Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Appl Phycol 12:325–330CrossRefGoogle Scholar
  118. Glyantsev S, Annaev A, Savvina TV (1993) Morphological basis for selecting composition and structure of biologically active compounds based on sodium alginate for wound treatment. Byull Eksp Biol Med 115:65–67CrossRefGoogle Scholar
  119. Goemar (2010), accessed 5 June 2010
  120. Granert C, Raud J, Waage A, Lindquist L (1999) Effects of polysaccharide fucoidin on cerebrospinal fluid interleukin-1 and tumor necrosis factor alpha in pneumococcal meningitis in the rabbit. Infect Immun 67:2071–2074PubMedGoogle Scholar
  121. Gravett RB (2000) The effect of Ascophyllum nodosum on immune function, performance, and carcass characteristics of sheep and cattle. Master’s thesis, Graduate Faculty of Texas Tech University, pp 1–86Google Scholar
  122. Greger M, Malm T, Kautsky L (2007) Heavy metal transfer from composted macroalgae to crops. Eur J Agron 26:257–265CrossRefGoogle Scholar
  123. Gruenwald J (2008), accessed 8 January 2010
  124. Hammerstrom K, Dethier MN, Duggins DO (1998) Rapid phlorotannin induction and relaxation in five Washington kelps. Mar Ecol Prog Ser 165:263–305CrossRefGoogle Scholar
  125. Han JG, Syed AQ, Kwon M, Ha JH, Lee HY (2008) Antioxident, immunomodulatory and anticancer activity of fucoidan isolated from Fucus vesiculosus. J Biotechnol 136:571CrossRefGoogle Scholar
  126. Haug A, Jensen A (1954) Seasonal variation in the chemical composition of Alaria esculenta, Laminaria saccharina, Laminaria hyperborea and Laminaria digitata from Northern Norway, Norwegian Institute of Seaweed Research. Akademisk Trykningssentral, Blindern, Norway. Report 4, pp 1–14Google Scholar
  127. Haug A, Larsen B (1957) Carotene content of seaweed and seaweed meal. Norwegian Institute of Seaweed Research. Akademisk Trykningssentral, Blindern, Norway. Report 16, pp 1–19Google Scholar
  128. Haug A, Larsen B (1958) Brunfarging av tangmel og tangekstrakter [The formation of brown coloured substances in seaweed and seaweed extracts]. Norwegian Institute of Seaweed Research. NTH Trykk, Norway. Report 22, pp 1–18Google Scholar
  129. Haugan JA, Liaaen-Jensen S (1989) Algal carotenoids.43. Improved isolation procedure for fucoxanthin. Phytochemistry 28:2797–2798CrossRefGoogle Scholar
  130. Haugan JA, Liaaen-Jensen S (1994) Algal carotenoids.54. Carotenoids of brown-algae (Phaeophyceae). Biochem Syst Ecol 22:31–41CrossRefGoogle Scholar
  131. Hawkins WW, Leonard VG (1963) Antithrombic activity of carrageenan in human blood. Can J Physiol Biochem 41:1325–1327CrossRefGoogle Scholar
  132. Hawkins WW, Yaphe W (1965) Carrageenan as a dietary constituent for rat—faecal excretion nitrogen absorption and growth. Can J Biochem 43:479–484PubMedGoogle Scholar
  133. Hawkins WW, Leonard VG, Maxwell JE, Rastogi KS (1962) A study of the prolonged intake of small amounts of EDTA on the utilization of low dietary levels of calcium and iron by the rat. Can J Physiol Biochem 40:391CrossRefGoogle Scholar
  134. Hayashi L, Yokoya NS, Ostini S, Pereira RTL, Braga ES, Oliveira EC (2008) Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture 277:185–191CrossRefGoogle Scholar
  135. Heller L (2009) Functional foods: what they mean around the world., accessed July 2010
  136. Hellio C, De La Broise D, Dufosse L, Le Gal Y, Bourgougnon N (2001) Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Mar Environ Res 52:231–247PubMedCrossRefGoogle Scholar
  137. Hemmingson J, Falshaw R, Furneaux R, Thompson K (2006) Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta). J Appl Phycol 18:185–193CrossRefGoogle Scholar
  138. Hennequart F (2007) Seaweed applications in human health/nutrition: the example of algal extracts as functional ingredients in novel beverages. 4th International Symposium Health and Sea, Granville, France., accessed 26 October 2010
  139. Heo SJ, Jeon YJ (2009) Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B 65:101–107CrossRefGoogle Scholar
  140. Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96:1613–1623PubMedCrossRefGoogle Scholar
  141. Herbreteau F, Coiffard LJM, Derrien A, De Roeck-Holtzhauer Y (1997) The fatty acid composition of five species of macroalgae. Bot Mar 40:25–27CrossRefGoogle Scholar
  142. Hoebler C, Guillon F, Darcy-Vrillon B, Vaugelade P, Lahaye M, Worthington E, Duee PH, Barry JL (2000) Supplementation of pig diet with algal fibre changes the chemical and physicochemical characteristics of digesta. J Sci Food Agric 80:1357–1364CrossRefGoogle Scholar
  143. Hoffmane R, Paper DH, Donaldson J, Alban S, Franz G (1995) Characterization of a laminarin sulfate which inhibits basic fibroblast growth-factor binding and endothelial-cell proliferation. J Cell Sci 108:3591–3598Google Scholar
  144. Holdt SL (2009) Nutrient reduction in aquaculture waste by macroalgae production. PhD dissertation, University of Southern Denmark, 80 ppGoogle Scholar
  145. Hori K, Ikegami S, Miyazawa K, Ito K (1988) Mitogenic and antineoplastic isoagglutinins from the red alga Solieria robusta. Phytochemistry 27:2063–2067CrossRefGoogle Scholar
  146. Hori K, Matsubara K, Miyazawa K (2000) Primary structures of two hemagglutinins from the marine red alga, Hypnea japonica. Biochim Biophys Acta Gen Subj 147:226–236CrossRefGoogle Scholar
  147. Hori K, Sato Y, Ito K, Fujiwara Y, Iwamoto Y, Makino H, Kawakubo A (2007) Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin. Glycobiology 17:479–491PubMedCrossRefGoogle Scholar
  148. Horn SJ (2000) Bioenergy from brown seaweeds. PhD dissertation, Department of Biotechnology, Norwegian University of Science and Technology, NTNU, Norway, 82 ppGoogle Scholar
  149. Hosokawa M, Wanezaki S, Miyauchi K, Kunihara H, Kohno H, Kawabata J, Odashima S, Takahashi K (1999) Apoptosis-inducing effect of fucoxanthin on human leukemia cell line HIL-60. Food Sci Technol Res 5:243–246CrossRefGoogle Scholar
  150. Houghton JD (1996) Haems and bilins. In: Houghton JD, Hendry GAF (eds) Natural food colorants, 2nd edn. Blackie (Chapman and Hall), Glasgow, pp 157–196CrossRefGoogle Scholar
  151. Houston MC (2005) Nutraceuticals, vitamins, antioxidants, and minerals in the prevention and treatment of hypertension. Prog Cardiovasc Dis 47:396–449PubMedCrossRefGoogle Scholar
  152. Hu JF, Geng MY, Zhang JT, Jiang HD (2001) An in vitro study of the structure–activity relationships of sulfated polysaccharide from brown algae to its antioxidant effect. J Asian Nat Prod Res 3:353–358PubMedCrossRefGoogle Scholar
  153. Huang HL, Wang BG (2004) Antioxidant capacity and lipophilic content of seaweeds collected from the Qingdao coastline. J Agric Food Chem 52:4993–4997PubMedCrossRefGoogle Scholar
  154. Ichikawa S, Kamoshida M, Hanaoka K, Hamano M, Maitani T, Kaise T (2006) Decrease of arsenic in edible brown algae Hijikia fusiforme by the cooking process. Appl Organomet Chem 20:585–590CrossRefGoogle Scholar
  155. Ikeda K, Kitamura A, Machida H, Watanabe M, Negishi H, Hiraoka J, Nakano T (2003) Effect of Undaria pinnatifida (wakame) on the development of cerebrovascular diseases in stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 30:44–48PubMedCrossRefGoogle Scholar
  156. Iliopoulou D, Roussis V, Pannecouque C, De Clercq E, Vagias C (2002) Halogenated sesquiterpenes from the red alga Laurencia obtusa. Tetrahedron 58:6749–6755CrossRefGoogle Scholar
  157. Indergaard M, Minsaas J (1991) Seaweed resources in Europe: uses and potential. In: Guiry MD, Blunden G (eds) Animal and human nutrition. Wiley, Chichester, pp 21–64Google Scholar
  158. Iqbal M, Flick-Smith H, McCauley JW (2000) Interactions of bovine viral diarrhoea virus glycoprotein E-rns with cell surface glycosaminoglycans. J Gen Virol 81:451–459PubMedGoogle Scholar
  159. Ishihara K, Murata M, Kaneniwa M, Saito H, Shinohara K, Maeda-Yamamoto M (1998) Inhibition of icosanoid production in MC/9 mouse mast cells by n-3 polyunsaturated fatty acids isolated from edible marine algae. Biosci Biotechnol Biochem 62:1412–1415PubMedCrossRefGoogle Scholar
  160. Ishihara K, Murata M, Kaneniwa M, Saito H, Komatsu W, Shinohara K (2000) Purification of stearidonic acid (18: 4(n-3)) and hexadecatetraenoic acid (16: 4(n-3)) from algal fatty acid with lipase and medium pressure liquid chromatography. Biosci Biotechnol Biochem 64:2454–2457PubMedCrossRefGoogle Scholar
  161. Ito K, Tsuchida Y (1972) The effect of algal polysaccharides on depressing of plasma cholesterol level in rats. Proceedings of the7th International Seaweed Symposium, pp 451–455Google Scholar
  162. Je J-Y, Park PJ, Kim EK, Park JS, Yoon HD, Kim KR, Ahn CB (2009) Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. LWT Food Sci Technol 42:874–878CrossRefGoogle Scholar
  163. Jenkins DJA, Wolever TMS, Leeds AR, Gassull MA, Haisman P, Dilawari J, Goff DV, Metz GL, Alberti KGMM (1978) Dietary fibers, fiber analogs, and glucose-tolerance—importance of viscosity. Br Med J 1:1392–1394PubMedCrossRefGoogle Scholar
  164. Jensen A (1956) Component sugars of some common brown algae. Norwegian Institute of Seaweed Research, Akademisk Trykningssentral, Blindern, Oslo. Report 9, pp 1–8Google Scholar
  165. Jensen A (1960) Produksjon av tangmel. Norwegian Institute of Seaweed Research, N.T.H. TRYKK. Report 24, pp 1–23Google Scholar
  166. Jensen A (1966) Carotenoids of Norwegian brown seaweeds and of seaweed meals. Norwegian Institute of Seaweed Research, TAPIR. Report 31, pp 1–138Google Scholar
  167. Jensen A (1969a) Tocopherol content of seaweed and seaweed meal. 2. Individual, diurnal and seasonal variations in some Fucaceae. J Sci Food Agric 20:454–458CrossRefGoogle Scholar
  168. Jensen A (1969b) Tocopherol content of seaweed and seaweed meal. 3. Influence of processing and storage on content of tocopherols, carotenoids and ascorbic acid in seawood meal. J Sci Food Agric 20:622–626PubMedCrossRefGoogle Scholar
  169. Jensen A, Haug A (1956) Geographical and seasonal variation in the chemical composition of Laminaria hyperborea and Laminaria digitata from the Norwegian coast. Norwegian Institute of Seaweed Research, Akademisk Trykningssentral, Blindern, Oslo. Report 14, pp 1–8Google Scholar
  170. Jensen A, Nebb H, Sæter EA (1968) The value of Norwegian seaweed meal as a mineral supplement for dairy cows. Norwegian Institute of Seaweed Research, TAPIR. Report 32, pp 1–35Google Scholar
  171. Jeon Y-J, Athukorala Y, Lee J (2005) Characterization of agarose product from agar using DMSO. Algae 20:61–67CrossRefGoogle Scholar
  172. Johnson CR, Mann KH (1986) The importance of plant defence abilities to the structure of subtidal seaweed communities: the kelp Laminaria longicruris de la Pylaie survives grazing by the snail Lacuna vincta (Montagu) at high population densities. J Exp Mar Biol Ecol 97:231–267CrossRefGoogle Scholar
  173. Jones AL, Harwood JL (1992) Lipid composition of the brown algae Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 31:3397–3403CrossRefGoogle Scholar
  174. Joseph J, Niggemann B, Zaenker KS, Entschladen F (2002) The neurotransmitter γ-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res 62:6467–6469PubMedGoogle Scholar
  175. Kaeffer B, Benard C, Lahaye M, Blottiere HM, Cherbut C (1999) Biological properties of ulvan, a new source of green seaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelial tells. Planta Med 65:527–531PubMedCrossRefGoogle Scholar
  176. Kalt W, McDonald JE, Donner H (2000) Anthocyanins, phenolics, and antioxidant capacity of processed lowbush blueberry products. J Food Sci 65:390–393CrossRefGoogle Scholar
  177. Kanazawa K, Ozaki Y, Hashimoto T, Das SK, Matsushita S, Hirano M, Okada T, Komoto A, Mori N, Nakatsuka M (2008) Commercial-scale preparation of biofunctional fucoxanthin from waste parts of brown sea algae Laminalia japonica. Food Sci Technol Res 14:573–582CrossRefGoogle Scholar
  178. Kang K, Park Y, Hwang HJ, Kim SH, Lee JG, Shin HC (2003) Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors. Arch Pharm Res 26:286–293PubMedCrossRefGoogle Scholar
  179. Katayama S, Ohshita J, Sugaya K, Hirano M, Momose Y, Yamamura S (1998) New medicinal treatment for severe gingivostomatitis. Int J Mol Med 2:675–679PubMedGoogle Scholar
  180. Kawakubo AL, Makino H, Ohnishi J, Hirohara H, Hori K (1997) The marine red alga Eucheuma serra J. Agardh, a high yielding source of two isolectins. J Appl Phycol 9:331–338CrossRefGoogle Scholar
  181. Kawakubo A, Makino H, Ohnishi J, Hirohara H, Hori K (1999) Occurrence of highly yielded lectins homologous within the genus Eucheuma. J Appl Phycol 11:149–156CrossRefGoogle Scholar
  182. Khan MNA, Cho JY, Lee MC, Kang JY, Park NG, Fujii H, Hong YK (2007) Isolation of two anti-inflammatory and one pro-inflammatory polyunsaturated fatty acids from the brown seaweed Undaria pinnatifida. J Agric Food Chem 55:6984–6988PubMedCrossRefGoogle Scholar
  183. Khan MNA, Suk-Choi J, Lee MC, Kim E, Nam TJ, Fujii H, Hong YK (2008) Anti-inflammatory activities of methanol extracts from various seaweed species. J Environ Biol 29:465–469PubMedGoogle Scholar
  184. Khotimchenko SV (1991) Fatty-acid composition of 7 Sargassum species. Phytochemistry 30:2639–2641CrossRefGoogle Scholar
  185. Khotimchenko SV (2003) The fatty acid composition of glycolipids of marine macrophytes. Russ J Mar Biol 29:126–128CrossRefGoogle Scholar
  186. Khotimchenko SV (2005) Lipids from the marine alga Gracilaria verrucosa. Chem Nat Compd 41:285–288CrossRefGoogle Scholar
  187. Khotimchenko SV, Levchenko EV (1997) Lipids of the red alga Gracilaria verrucosa (Huds.) Papenf. Bot Mar 40:541–545CrossRefGoogle Scholar
  188. Khotimchenko YS, Kovalev VV, Savchenko OV, Ziganshina OA (2001) Physical–chemical properties, physiological activity, and usage of alginates, the polysaccharides of brown algae. Russ J Mar Biol 27:53–64CrossRefGoogle Scholar
  189. Kim IH, Lee JH (2008) Antimicrobial activities against methicillin-resistant Staphylococcus aureus from macroalgae. J Ind Eng Chem 14:568–572Google Scholar
  190. Kim MK, JP D, Thomas JC, Giraud G (1996) Seasonal variations of triacylglycerols and fatty acids in Fucus serratus. Phytochemistry 43:49–55CrossRefGoogle Scholar
  191. Kimura Y, Watanabe K, Okuda H (1996) Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J Ethnopharmacol 54:47–54PubMedCrossRefGoogle Scholar
  192. Kindness G, Williamson FB, Long WF (1979) Effect of polyanetholesulphonic acid and xylan sulphate on antithrombin III activity. Biochem Biophys Res Commun 13:1062–1068CrossRefGoogle Scholar
  193. Kiriyama S, Okazaki Y, Yoshida A (1969) Hypocholesterolemic effect of polysaccharides and polysaccharide-rich foodstuffs in cholesterol-fed rats. J Nutr 97:382–388PubMedGoogle Scholar
  194. Klinkenberg-Knol EC, Festen HP, Meuwissen SG (1995) Pharmacological management of gastro-oesophageal reflux disease. Drugs 49:495–710CrossRefGoogle Scholar
  195. Knott MG, Mkwananzi H, Arendse CE, Hendricks DT, Bolton JJ, Beukes DR (2005) Plocoralides A-C, polyhalogenated monoterpenes from the marine alga Plocamium corallorhiza. Phytochemistry 66:1108–1112PubMedCrossRefGoogle Scholar
  196. Korver O, Kühn MC, Richardson DP (2008) The functional food dossier; Building solid health claims. Practical industrial guide. Foodlink Forum, Bennekom, the Netherlands, 185 ppGoogle Scholar
  197. Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A (2001) Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131:3303–3306PubMedGoogle Scholar
  198. Kumar CS, Ganesan P, Bhaskar N (2008a) In vitro antioxidant activities of three selected brown seaweeds of India. Food Chem 107:707–713CrossRefGoogle Scholar
  199. Kumar CS, Ganesan P, Suresh PV, Bhaskar N (2008b) Seaweeds as a source of nutritionally beneficial compounds—a review. J Food Sci Technol 45:1–13Google Scholar
  200. Kumar KS, Ganesane K, Rao PVS (2008c) Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty—an edible seaweed. Food Chem 107:289–295CrossRefGoogle Scholar
  201. Kuznetsova TA, Krylova NV, Besednova NN, Vasiléva VN, Zviagintseva TN, Krashevskii SV, Eliakova LA (1994) The effect of translam on the natural resistance indices of the irradiated organism. Radiats Biol Radioecol 34:236–239PubMedGoogle Scholar
  202. Kylin H (1913) Zur Biochemie der Meeresalgen. Hoppe-Seyler’s Z Physiol Chem 83:171–197CrossRefGoogle Scholar
  203. Lahaye M (1991) Marine-algae as sources of fibers—determination of soluble and insoluble dietary fiber contents in some sea vegetables. J Sci Food Agric 54:587–594CrossRefGoogle Scholar
  204. Lahaye M (1998) NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohydr Res 314:1–12PubMedCrossRefGoogle Scholar
  205. Lahaye M, Kaeffer B (1997) Seaweed dietary fibres: structure, physico-chemical and biological properties relevant to intestinal physiology. Sci Aliment 17:563–584Google Scholar
  206. Lahaye M, Ray B (1996) Cell-wall polysaccharides from the marine green alga Ulva rigida (Ulvales, Chlorophyta)—NMR analysis of ulvan oligosaccharides. Carbohydr Res 283:161–173PubMedCrossRefGoogle Scholar
  207. Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774PubMedCrossRefGoogle Scholar
  208. Lahaye M, Michel C, Barry JL (1993) Chemical, physicochemical and in vitro fermentation characteristics of dietary-fibers from Palmaria palmata (L.) Kuntze. Food Chem 47:29–36CrossRefGoogle Scholar
  209. Lahaye M, Inizan F, Vigouroux J (1998) NMR analysis of the chemical structure of ulvan and of ulvan–boron complex formation. Carbohydr Polym 36:239–249CrossRefGoogle Scholar
  210. Lahaye M, Rondeau-Mouro C, Deniaud E, Buleon A (2003) Solid-state 13C NMR spectroscopy studies of xylans in the cell wall of Palmaria palmata (L. Kuntze, Rhodophyta). Carbohydr Res 338:1559–1569PubMedCrossRefGoogle Scholar
  211. Lam C, Stang A, Harder T (2008) Planktonic bacteria and fungi are selectively eliminated by exposure to marine macroalgae in close proximity. FEMS Microbiol Ecol 63:283–291PubMedCrossRefGoogle Scholar
  212. Lamare MD, Wing SR (2001) Calorific content of New Zealand marine macrophytes. NZ J Mar Freshwat Res 35:335–341CrossRefGoogle Scholar
  213. Lamela M, Anca J, Villar R, Otero J, Calleja JM (1989) Hypoglycemic activity of several seaweed extracts. J Ethnopharmacol 27:35–43PubMedCrossRefGoogle Scholar
  214. Larsen B, Haug A (1958) The influence of habitat on the chemical composition of Ascophyllum nodosum (L.) Le Jol.-reprint of report 20. Norwegian Institute of Seaweed Research. Trondheim, Norway, pp 29–38Google Scholar
  215. Lasky LA (1995) Selectin–carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64:113–139PubMedCrossRefGoogle Scholar
  216. Le Tutour B (1990) Antioxidative activities of algal extracts, synergistic effect with vitamin E. Phytochemistry 29:3759–3765CrossRefGoogle Scholar
  217. Le Tutour B, Benslimane F, MPe G, Saadan B, Quemeneur F (1998) Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J Appl Phycol 10:121–129CrossRefGoogle Scholar
  218. Lee JB, Hayashi K, Hashimoto M, Nakano T, Hayashi T (2004) Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull 52:1091–1094PubMedCrossRefGoogle Scholar
  219. Li F, Tian TC, Shi YC (1995) Study on anti virus effect of fucoidan in vitro. J Norman Bethune Univ Med Sci 21:255–257Google Scholar
  220. Li N, Zhang QB, Song JM (2005) Toxicological evaluation of fucoidan extracted from Laminaria japonica in Wistar rats. Food Chem Toxicol 43:421–426PubMedCrossRefGoogle Scholar
  221. Li K, Li XM, Ji NY, Wang BG (2007) Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): structural elucidation and DPPH radical-scavenging activity. Bioorg Med Chem 15:6627–6631PubMedCrossRefGoogle Scholar
  222. Li B, Lu F, Wei XJ, Zhao RX (2008a) Fucoidan: structure and bioactivity. Molecules 13:1671–1695CrossRefGoogle Scholar
  223. Li Y, Qian ZJ, Le QT, Kim MM, Kim SK (2008b) Bioactive phloroglucinol derivatives isolated from an edible marine brown alga, Ecklonia cava. J Biotechnol 136:578CrossRefGoogle Scholar
  224. Li Y, Qian ZJ, Ryu B, Lee SH, Kim MM, Kim SK (2009) Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorg Med Chem 17:1963–1973PubMedCrossRefGoogle Scholar
  225. Liao WR, Lin JY, Shieh WY, Jeng WL, Huang R (2003) Antibiotic activity of lectins from marine algae against marine vibrios. J Ind Microbiol Biotechnol 30:433–439PubMedCrossRefGoogle Scholar
  226. Lim SN, Cheung PCK, Ooi VEC, Ang PO (2002) Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J Agric Food Chem 50:3862–3866PubMedCrossRefGoogle Scholar
  227. Liu RM, Bignon J, Haroun-Bouhedja F, Bittoun P, Vassy J, Fermandjian S, Wdzieczak-Bakala J, Boisson-Vidal C (2005) Inhibitory effect of fucoidan on the adhesion of adenocarcinoma cells to fibronectin. Anticancer Res 25:2129–2133PubMedGoogle Scholar
  228. Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge, 384 ppCrossRefGoogle Scholar
  229. Lourenço R, Camilo ME (2002) Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp 17:262–270PubMedGoogle Scholar
  230. Lüder UH, Clayton MN (2004) Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory—the first microscopic study. Planta 218:928–937PubMedCrossRefGoogle Scholar
  231. Lüning (2008) Integrated macroalgae-oyster aquaculture on a north sea island: seasonal productivity of the brown alga Laminaria saccharina and the red algae Palmaria palmata; Solieria chordalis, Gracilaria vermiculophylla, and the use of these seaweeds in human nutrition or as raw material for the cosmetics industry. 11th International Conference on Applied Phycology, Galway, Ireland. June 22–27Google Scholar
  232. Luescher-Mattli M (2003) Algae, a possible source for new drugs in the treatment of HIV and other viral diseases. Curr Med Chem 2:219–225Google Scholar
  233. Mabeau S, Fleurence J (1993) Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4:103–107CrossRefGoogle Scholar
  234. MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543PubMedCrossRefGoogle Scholar
  235. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332:392–397PubMedCrossRefGoogle Scholar
  236. Maeda H, Tsukui T, Sashima T, Hosokawa M, Miyashita K (2008a) Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac J Clin Nutr 17:196–199PubMedGoogle Scholar
  237. Maeda H, Hosokawa M, Sashima T, Miyashita K (2008b) Antiobesity effect of fucoxanthin from edible seaweeds and its multibiological functions. ACS Symp Ser 993:376–388CrossRefGoogle Scholar
  238. Mai K, Mercer JP, Donlon J (1994) Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus Hannai Ino. II. Amino acid composition of abalone and six species of macroalgae with an assessment of their nutritional-value. Aquaculture 128:115–130CrossRefGoogle Scholar
  239. Maliakal PP, Coville PF, Wanwimolruk S (2001) Tea consumption modulates hepatic drug metabolizing enzymes in Wistar rats. J Pharm Pharmacol 53:569–577PubMedCrossRefGoogle Scholar
  240. Mandal P, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B (2007) Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antiviral Chem Chemother 18:153–162Google Scholar
  241. Marais MF, Joseleau JP (2001) A fucoidan fraction from Ascophyllum nodosum. Carbohydr Res 336:155–159PubMedCrossRefGoogle Scholar
  242. Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406PubMedCrossRefGoogle Scholar
  243. Marinova (2010) Nutraceuticals from Maritech extracts. on December 13 2010
  244. Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336CrossRefGoogle Scholar
  245. Martino AD, Douady D, Quinet-Szely M, Rousseau B, Crépineau F, Apt K, Caron L (2004) The light-harvesting antenna of brown algae. Highly homologous proteins encoded by a multigene family. Eur J Biochem 267:5540–5549CrossRefGoogle Scholar
  246. Maruyama H, Tamauchi H, Hashimoto M, Nakano T (2003) Antitumor activity and immune response of Mekabu fucoidan extracted from sporophyll of Undaria pinnatifida. In Vivo 17:245–249PubMedGoogle Scholar
  247. Maruyama H, Tamauchi H, Iizuka M, Nakano T (2006) The role of NK cells in antitumor activity of dietary fucoidan from Undoria pinnotifida sporophylls (Mekabu). Planta Med 72:1415–1417PubMedCrossRefGoogle Scholar
  248. Maruyama H, Tanaka M, Hashimoto M, Inoue M, Sasahara T (2007) The suppressive effect of Mekabu fucoidan on an attachment of Cryptosporidium parvum oocysts to the intestinal epithelial cells in neonatal mice. Life Sci 80:775–781PubMedCrossRefGoogle Scholar
  249. Matsubara K, Sumi H, Hori K (1996) Platelet aggregation is inhibited by phycolectins. Experientia 52:540–543PubMedCrossRefGoogle Scholar
  250. Matsubara K, Xue C, Zhao X, Mori M, Sugawara T, Hirata T (2005) Effects of middle molecular weight fucoidans on in vitro and ex vivo angiogenesis of endothelial cells. Int J Mol Med 15:695–699PubMedGoogle Scholar
  251. Mayer AMS, Hamann MT (2004) Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol 6:37–52PubMedCrossRefGoogle Scholar
  252. Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT (2007) Marine pharmacology in 2003–4: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C 145:553–581Google Scholar
  253. McHugh DJ (1987) Production and utilization of products from commercial seaweeds. FAO Fisheries Technical Paper No. 288, pp 1–189Google Scholar
  254. McHugh DJ (2003) A guide to the seaweed industry. FAO Fish Tech Pap 441, Rome, Italy, 105 ppGoogle Scholar
  255. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152PubMedCrossRefGoogle Scholar
  256. Miao HQ, Elkin M, Aingorn E, Ishai-Michaeli R, Stein CA, Vlodavsky I (1999) Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer 83:424–431PubMedCrossRefGoogle Scholar
  257. Michel C, Macfarlane GT (1996) Digestive fates of soluble polysaccharides from marine macroalgae: involvement of the colonic microflora and physiological consequences for the host. J Appl Bacteriol 80:349–369PubMedGoogle Scholar
  258. Michel C, Lahaye M, Bonnet C, Mabeau S, Barry JL (1996) In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br J Nutr 75:263–280PubMedCrossRefGoogle Scholar
  259. Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146CrossRefGoogle Scholar
  260. Militante JD, Lombardini JB (2002) Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 23:381–393PubMedCrossRefGoogle Scholar
  261. Miraglio AM (2009) Phospholipids: structure plus functionality. http://www foodproductdesign com/articles/2006/03/phospholipids-structure-plus-functionality.aspx, accessed 5 June 2010
  262. Mishra VK, Temelli F, Ooraikul B, Shacklock PF, Craigie JS (1993) Lipids of the red alga, Palmaria palmata. Bot Mar 36:169–174CrossRefGoogle Scholar
  263. Miyashita H, Hosokawa M (2008) Beneficial health effects of seaweed carotenoid, fucoxanthin. In: Barrow C, Shahidi F (eds) Marine nutraceuticals and functional foods. CRC, Boca Raton, pp 297–320Google Scholar
  264. Mochizuki H, Takido J, Oda H, Yokogoshi H (1999) Improving effect of dietary taurine on marked hypercholesterolemia induced by a high-cholesterol diet in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 63:1984–1987PubMedCrossRefGoogle Scholar
  265. Morgan K, Wright J, Simpson F (1980) Review of chemical constituents of the red alga Palmaria palmata (dulse). Econ Bot 34:27–50CrossRefGoogle Scholar
  266. Mori J, Matsunaga T, Takahashi S, Hasegawa C, Saito H (2003) Inhibitory activity on lipid peroxidation of extracts from marine brown alga. Phytother Res 17:549–551PubMedCrossRefGoogle Scholar
  267. Mori T, O’Keefe BR, Sowder RC, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW, McMahon JB et al (2005) Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 280:9345–9353PubMedCrossRefGoogle Scholar
  268. Morrissey J, Kraan S, Guiry MD (2001) A guide to commercially important seaweeds on the Irish coast. Bord Iascaigh Mhara, Dublin, 66 ppGoogle Scholar
  269. Morse ANC (1991) GABA-mimetic peptides from marine algae and cyanobacteria as potential diagnostic and therapeutic agents. In: Thompson MF, Sarojini R, Nagabhushanam R (eds) Bioactive compounds from marine organisms. Oxford & IBH Publishing, New Delhi, pp 167–172Google Scholar
  270. Mouradi-Givernaud A, Givernaud T, Morvan H, Cosson J (1992) Agar from Gelidium latifolium (Rhodophyceae, Gelidiales)—biochemical composition and seasonal variations. Bot Mar 35:153–159CrossRefGoogle Scholar
  271. Mouritsen OG (2009) Tang-grøntsager fra havet. Nyt Nordisk Forlag, Arnold Busck, Copenhagen, 284 pp (in Danish)Google Scholar
  272. Munda IM (1977) Differences in amino acid composition of estuarine and marine fucoids. Aquat Bot 3:273–280CrossRefGoogle Scholar
  273. Murata M, Nakazoe J (2001) Production and use of marine algae in Japan. Jpn Agr Res Q 35:281–290Google Scholar
  274. Murata M, Ishihara K, Saito H (1999) Hepatic fatty acid oxidation enzyme activities are stimulated in rats fed the brown seaweed, Undaria pinnatifida (wakame). J Nutr 129:146–151PubMedGoogle Scholar
  275. Murata M, Sano Y, Ishihara K, Uchida M (2002) Dietary fish oil and Undaria pinnatifida (wakame) synergistically decrease rat serum and liver triacylglycerol. J Nutr 132:742–747PubMedGoogle Scholar
  276. Müssig K (2009) Iodine-induced toxic effects due to seaweed consumption. In: Preedy VR, Burrow GN, Watson R (eds) Comprehensive handbook of iodine. Elsevier, New York, pp 897–908CrossRefGoogle Scholar
  277. Mustafa MG, Wakamatsu S, Takeda TA, Umino T, Nakagawa H (1995) Effects of algae meal as feed additive on growth, feed efficiency, and body composition in red sea bream. Fish Sci 61:25–28Google Scholar
  278. Nabors LOB (2004) Alternative sweeteners. Agro Food Industry Hi-Tech 15:39–41Google Scholar
  279. Nagaoka M, Shibata H, Kimura-Takagi I, Hashimoto S, Kimura K, Makino T, Aiyama R, Ueyama S, Yokokura T (1999) Structural study of fucoidan from Cladosiphon okamuranus Tokida. Glycoconj J 16:19–26PubMedCrossRefGoogle Scholar
  280. Nagaoka M, Shibata H, Kimura I, Hashimoto S (2003) Oligosaccharide derivatives and process for producing the same. United States Patent No. 6,645,940Google Scholar
  281. Nagayama K, Shibata T, Fujimoto K, Honjo T, Nakamura T (2003) Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture 218:601–611CrossRefGoogle Scholar
  282. Nakagawa H, Kasahara S (1986) Effect of Ulva meal supplement to diet on the lipid metabolism of red sea bream. Bull Jpn Soc Sci Fish 52:1887–1893Google Scholar
  283. Nakagawa H, Umino T, Tasaka Y (1997) Usefulness of Ascophyllum meal as a feed additive for red sea bream, Pagrus major. Aquaculture 151:275–281Google Scholar
  284. Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fish Sci 62:923–926Google Scholar
  285. Nakazawa Y, Sashima T, Hosokawa M, Miyashita K (2009) Comparative evaluation of growth inhibitory effect of stereoisomers of fucoxanthin in human cancer cell lines. J Funct Foods 1:88–97CrossRefGoogle Scholar
  286. Narayan B, Miyashita K, Hosakawa M (2006) Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—a review. Food Rev Int 22:291–307CrossRefGoogle Scholar
  287. Nasu T, Fukuda Y, Nagahira K, Kawashima H, Noguchi C, Nakanishi T (1997) Fucoidin, a potent inhibitor of L-selectin function, reduces contact hypersensitivity reaction in mice. Immunol Lett 59:47–51PubMedCrossRefGoogle Scholar
  288. Nishide E, Uchida H (2003) Effects of Ulva powder on the ingestion and excretion of cholesterol in rats. In: Chapman ARO, Anderson RJ, Vreeland VJ, Davison IR (eds) Proceedings of the 17th International Seaweed Symposium. Oxford University Press, Oxford, pp 165–168Google Scholar
  289. Nishide E, Anzai H, Uchida N (1993) Effects of alginates on the ingestion and excretion of cholesterol in the rat. J Appl Phycol 5:207–211CrossRefGoogle Scholar
  290. Nishino T, Nishioka C, Ura H, Nagumo T (1994) Isolation and partial characterization of a novel amino sugar-containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr Res 255:213–224PubMedCrossRefGoogle Scholar
  291. Nisizawa K (2002) Seaweed Kaiso, bountiful harvest from the seas. Sustenance for health and well-being by preventing common life-style related diseases. Kochi University, Kochi, 106 ppGoogle Scholar
  292. Noa M, Mas R, Carbajal D, Valdes S (2000) Effect of D-002 on acetic acid-induced colitis in rats at single and repeated doses. Pharmacol Res 41:391–395PubMedCrossRefGoogle Scholar
  293. Noda H (1993) Health benefits and nutritional properties of nori. J Appl Phycol 5:255–258CrossRefGoogle Scholar
  294. Okuzumi J, Takahashi T, Yamane T, Kitao Y, Inagake M, Ohya K, Nishino H, Tanaka Y (1993) Inhibitory effects of fucoxanthin, a natural carotenoid, on N-ethyl-N′-nitro-N-nitrosoguanidine-induced mouse duodenal carcinogenesis. Cancer Lett 68:159–168PubMedCrossRefGoogle Scholar
  295. Omata M, Matsui N, Inomata N, Ohno T (1997) Protective effects of polysaccharide fucoidin on myocardial ischemia–reperfusion injury in rats. J Cardiovasc Pharmacol 30:717–724PubMedCrossRefGoogle Scholar
  296. Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernández J, Bozzo C, Navarrete E, Osorio A, Rios A (2006) Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem 99:98–104CrossRefGoogle Scholar
  297. Ostergaard C, Yieng-Kow RV, Benfield T, Frimodt-Moller N, Espersen F, Lundgren JD (2000) Inhibition of leukocyte entry into the brain by the selectin blocker fucoidin decreases interleukin-1 (IL-1) levels but increases IL-8 levels in cerebrospinal fluid during experimental pneumococcal meningitis in rabbits. Infect Immun 68:3153–3157PubMedCrossRefGoogle Scholar
  298. Panlasigui LN, Baello OQ, Dimatangal JM, Dumelod BD (2003) Blood cholesterol and lipid-lowering effects of carrageenan on human volunteers. Asia Pac J Clin Nutr 12:209–214PubMedGoogle Scholar
  299. Paradossi G, Cavalieri F, Chiessi E (2002) A conformational study on the algal polysaccharide ulvan. Macromolecules 35:6404–6411CrossRefGoogle Scholar
  300. Park PJ, Heo SJ, Park EJ, Kim SK, Byun HG, Jeon BT, Jeon YJ (2005) Reactive oxygen scavenging effect of enzymatic extracts from Sargassum thunbergii. J Agric Food Chem 53:6666–6672PubMedCrossRefGoogle Scholar
  301. Parsons AF (1996) Recent developments in kainoid amino acid chemistry. Tetrahedron 52:4149–4174CrossRefGoogle Scholar
  302. Pavia H, Åberg P (1996) Spatial variation in polyphenolic content of Ascophyllum nodosum (Fucales, Phaeophyta). Hydrobiologia 326/327:199–203CrossRefGoogle Scholar
  303. Pavia H, Cervin G, Lindgren A, Åberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146CrossRefGoogle Scholar
  304. Pedersen M, Collen J, Abrahamsson K, Ekdahl A (1996) Production of halocarbons from seaweeds: an oxidative stress reaction? Sci Mar 60:257–263Google Scholar
  305. Percival E, McDowell RH (1990) Algal polysaccharides. In: Dey PM (ed) Methods in plant biochemistry, volume 2: carbohydrates. Academic, London, pp 523–547Google Scholar
  306. Perelló G, Martí-Cid R, Llobet JM, Domingo JL (2008) Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J Agric Food Chem 56:11262–11269PubMedCrossRefGoogle Scholar
  307. Plaza M, Cifuentes A, Ibáñez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39CrossRefGoogle Scholar
  308. Plouguerne E, Hellio C, Deslandes E, Veron B, Stiger-Pouvreau V (2008) Anti-microfouling activities in extracts of two invasive algae: Grateloupia turuturu and Sargassum muticum. Bot Mar 51:202–208CrossRefGoogle Scholar
  309. Population Council (2008) Trial shows anti-HIV microbicide is safe, but does not prove it effective. on December 12 2010
  310. Qi HM, Zhang QB, Zhao TT, Chen R, Zhang H, Niu XZ, Li Z (2005a) Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol 37:195–199PubMedCrossRefGoogle Scholar
  311. Qi HM, Zhao TT, Zhang QB, Li Z, Zhao ZQ, Xing R (2005b) Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol 17:527–534CrossRefGoogle Scholar
  312. Ragan MA, Jensen A (1978) Quantitative studies on brown algal phenols. II. Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). J Exp Mar Biol Ecol 34:245–258CrossRefGoogle Scholar
  313. Ramsey UP, Bird CJ, Shacklock PF, Laycock MV, Wright JL (1994) Kainic acid and 1′-hydroxykainic acid from Palmariales. Nat Toxins 2:286–292PubMedCrossRefGoogle Scholar
  314. Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. In: Taylor SL (ed) Advances in food and nutrition research, vol 52. Elsevier, New York, pp 237–292CrossRefGoogle Scholar
  315. Reckitt and Colman Products Ltd (1999) Formulations for the treatment of gastro-oesophageal reflux. US Patent No. 6,348,502Google Scholar
  316. Reilly P, O’Doherty JV, Pierce KM, Callan JJ, O’Sullivan JT, Sweeney T (2008) The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig. Animal 2:1465–1473CrossRefGoogle Scholar
  317. Renn DW, Noda H, Amano H, Nishino T, Nishizana K (1994a) Antihypertensive and antihyperlipidemic effects of funoran. Fish Sci 60:423–427Google Scholar
  318. Renn DW, Noda H, Amano H, Nishino T, Nishizana K (1994b) Study on hypertensive and antihyperlipidemic effect of marine algae. Fish Sci 60:83–88Google Scholar
  319. Reynolds JEF, Prasad AB (1982) Martindale the extra pharmacopoeia. 28th Pharmaceutical Press, London, 735 ppGoogle Scholar
  320. Riccardi BA, Fahrenbach MJ (1965) Effect of guar gum and pectin on serum and liver lipids of cholesterol-fed rats. Proc Soc Exp Biol Med 124:749–752Google Scholar
  321. Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 69:530–537CrossRefGoogle Scholar
  322. Robertson WV, Schwartz B (1953) Ascorbic acid and the formation of collagen. J Biol Chem 201:689–696Google Scholar
  323. Robledo D, Freile-Pelegrín Y (1997) Chemical and mineral composition of six potentially edible seaweed species of Yucatan. Bot Mar 40:301–306CrossRefGoogle Scholar
  324. Rocha de Souza M, Marques C, Guerra Dore C, Ferreira da Silva F, Oliveira Rocha H, Leite E (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19:153–160PubMedCrossRefGoogle Scholar
  325. Rodrigueza MRC, Montaño MNE (2007) Bioremediation potential of three carrageenophytes cultivated in tanks with seawater from fish farms. J Appl Phycol 19:755–762CrossRefGoogle Scholar
  326. Ronnberg O, Adjers K, Ruokolahti C, Bondestam M (1990) Fucus vesiculosus as an indicator of heavy metal availability in a fish farm recipient in the northern Baltic Sea. Mar Pollut Bull 21:388–392CrossRefGoogle Scholar
  327. Rorrer GL, Yoo HD, Huang YM, Hayden C, Gerwick WH (1997) Production of hydroxy fatty acids by cell suspension cultures of the marine brown alga Laminaria saccharina. Phytochemistry 46:871–877CrossRefGoogle Scholar
  328. Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26CrossRefGoogle Scholar
  329. Rupérez P, Saura-Calixto F (2001) Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur Food Res Technol 212:349–354CrossRefGoogle Scholar
  330. Ruperez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50:840–845PubMedCrossRefGoogle Scholar
  331. Sailler B, Glombitza KW (1999) Phlorethols and fucophlorethols from the brown alga Cystophora retroflexa. Phytochemistry 50:869–881CrossRefGoogle Scholar
  332. Sampath-Wiley P, Neefus CD, Jahnke LS (2008) Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales). J Exp Mar Biol Ecol 361:83–91CrossRefGoogle Scholar
  333. Sanchez-Machado DI, Lopez-Cervantes J, Lopez-Hernandez J, Paseiro-Losada P (2004a) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85:439–444CrossRefGoogle Scholar
  334. Sanchez-Machado DI, Lopez-Hernandez J, Paseiro-Losada P, Lopez-Cervantes J (2004b) An HPLC method for the quantification of sterols in edible seaweeds. Biomed Chromatogr 18:183–190PubMedCrossRefGoogle Scholar
  335. Sandau E, Sandau P, Pulz O, Zimmermann M (1996) Heavy metal sorption by marine algae and algae by-products. Acta Biotechnol 16:103–119CrossRefGoogle Scholar
  336. Sathivel A, Raghavendran HRB, Srinivasan P, Devaki T (2008) Anti-peroxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on d-galactosamine induced hepatitis in rats. Food Chem Toxicol 46:3262–3267PubMedCrossRefGoogle Scholar
  337. Sato M, Hosokawa T, Yamaguchi T, Nakano T, Muramoto K, Kahara T, Funayama K, Kobayashi A, Nakano T (2002) Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J Agric Food Chem 50:6245–6252PubMedCrossRefGoogle Scholar
  338. Satoh K, Nakagawa H, Kasahara S (1987) Effect of Ulva meal supplementation on disease resistance of red sea bream. Nippon Suisan Gakkaishi 53:1115–1120Google Scholar
  339. Savitskaya IM (1986) Trial of a local hemostatic with alginate base. Klin Khirurgiya 3:39–40Google Scholar
  340. Schaeffer DJ, Krylov VS (2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf 45:208–227PubMedCrossRefGoogle Scholar
  341. Segal HC, Hunt BJ, Gilding K (1998) The effects of alginate and non-alginate wound dressings on blood coagulation and platelet activation. J Biomater Appl 12:249–257PubMedGoogle Scholar
  342. Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136CrossRefGoogle Scholar
  343. Sen AK, Das AK, Banerji N, Siddhanta AK, Mody KH, Ramavat BK, Chauhan VD, Vedasiromoni JR, Ganguly DK (1994) A new sulfated polysaccharide with potent blood anti-coagulant activity from the red seaweed Grateloupia Indica. Int J Biol Macromol 16:279–280PubMedCrossRefGoogle Scholar
  344. Shanmugam M, Mody KH (2000) Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Curr Sci 79:1672–1683Google Scholar
  345. Sheth BB (1967) Alginate containing antacid compositions. US Patent No. 3,326,755Google Scholar
  346. Shinagawa A, Shiomi K, Yamanaka H, Kicuchi T (1983) Selective determination of inorganic arsenic(III), (V) and organic arsenic in marine organisms. Bull Jpn Soc Sci Fish 49:75–78Google Scholar
  347. Shiu CT, Lee TM (2005) Ultraviolet-B-induced oxidative stress and responses of the ascorbate–glutathione cycle in a marine macroalga Ulva fasciata. J Exp Bot 56:2851–2865PubMedCrossRefGoogle Scholar
  348. Sieburth JM, Conover JT (1965) Sargassum tannin, an antibiotic which retards fouling. Nature 208:52–53Google Scholar
  349. Simpson FJ, Shacklock PF (1979) The cultivation of Chondrus crispus. Effect of temperature on growth and carrageenan production. Bot Mar 22:295–298CrossRefGoogle Scholar
  350. Siriwardhana N, Lee KW, Kim SH, Ha JW, Jeon YJ (2003) Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci Technol Int 9:339–346CrossRefGoogle Scholar
  351. Siriwardhana N, Lee KW, Kim SH, Ha JH, Park GT, Jeon YJ (2004) Lipid peroxidation inhibitory effects of Hizikia fusiformis methanolic extract on fish oil and linoleic acid. Food Sci Technol Int 10:65–72CrossRefGoogle Scholar
  352. Skoler-Karpoff S, Ramjee G, Ahmed K, Altini L, Plagianos MG, Friedland B, Govender S, Kock AD, Cassim N, Palanee T et al (2008) Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomised, double-blind, placebo-controlled trial. Lancet 372:1977–1987PubMedCrossRefGoogle Scholar
  353. Slezka IE, Miroshichenko VA, Vostrikova OG, Ziganshina OA (1998) Applications of bioactive compounds from marine organisms in atherosclerosis prophylaxis in children, new biomedical technologies using bioactive additives. Proceedings of All Russian Conference. IMKVL Siberian Branch, Ross Akad Med Nauk, Vladivostok, pp 90–94Google Scholar
  354. Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262CrossRefGoogle Scholar
  355. Smith DG, Young EG (1953) On the nitrogenous constituents of Fucus vesiculosus. J Biol Chem 205:849–858PubMedGoogle Scholar
  356. Soler-Vila A, Coughlan S, Guiry MD, Kraan S (2009) The red alga Porphyra dioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): effects on growth, feed efficiency and carcass composition. J Appl Phycol 21:617–624CrossRefGoogle Scholar
  357. Sørensen HO (2009) Marine phospholipids. Int Aqua Feed 12:14–15Google Scholar
  358. Sæter EA, Jensen A (1957) Forsøk med tangmel som tilskuddsfôr til sau [Experiments with seaweed meal as supplement to rations for sheep—summary in English]. Norwegian Institute of Seaweed Research. Akademisk Trykningssentral, Blinder, Oslo. Report 17, pp 1–30Google Scholar
  359. Spieler R (2002) Seaweed compound’s anti-HIV efficacy will be tested in southern Africa. Lancet 359:1675PubMedCrossRefGoogle Scholar
  360. Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. BBA-Mol Basis Disease 1740:101–107CrossRefGoogle Scholar
  361. Stahl W, Ale-Agha N, Polidori MC (2002) Non-antioxidant properties of carotenoids. Biol Chem 383:553–558PubMedCrossRefGoogle Scholar
  362. Suetsuna K (1998a) Purification and identification of angiotensin I converting enzyme inhibitors from the red alga Porphyra yezoensis. J Mar Biotechnol 6:163–167PubMedGoogle Scholar
  363. Suetsuna K (1998b) Separation and identification of angiotensin I-converting enzyme inhibitory peptides from peptic digest of Hizikia fusiformis protein. Nippon Suisan Gakkaishi 64:862–866Google Scholar
  364. Suetsuna K, Maekawa K, Chen JR (2004) Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J Nutr Biochem 15:267–272PubMedCrossRefGoogle Scholar
  365. Sugahara T, Ohama Y, Fukuda A, Hayashi M, Kawakubo A, Kato K (2001) The cytotoxic effect of Eucheuma serra agglutinin (ESA) on cancer cells and its application to molecular probe for drug delivery system using lipid vesicles. Cytotechnology 36:93–99PubMedCrossRefGoogle Scholar
  366. Sugawara T, Baskaran V, Tsuzuki W, Nagao A (2002) Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by Caco-2 human intestinal cells and mice. J Nutr 132:946–951PubMedGoogle Scholar
  367. Suzuki M, Daitoh M, Vairappan CS, Abe T, Masuda M (2002) Brominated metabolites from an Okinawan Laurencia intricate. Phytochemistry 60:861–867PubMedCrossRefGoogle Scholar
  368. Swinyard EA, Pathak MA (1985) Surface-acting drugs. In: Gilman AG, Goodman LS, Rall TW (eds) The pharmacological basis of therapeutics, 7th edn. Macmillan, New York, pp 946–958Google Scholar
  369. Takahashi N, Ojika M, Dogasaki C, Nisizawa M, Fukuoka H, Sahara H, Sato N, Mori M, Kikuchi K (2000) Substance isolated from the kelp rhizoid identified as l-tryptophan shows high inhibition of breast cancer. Gan To Kagaku Ryoho 27:251–255PubMedGoogle Scholar
  370. Tasende MG (2000) Fatty acid and sterol composition of gametophytes and sporophytes of Chondrus crispus (Gigartinaceae, Rhodophyta). Sci Mar 64:421–426CrossRefGoogle Scholar
  371. Terada A, Hara H, Mitsuoka T (1995) Effect of dietary alginate on the faecal microbiota and faecal metabolic activity in humans. Microb Ecol Health Dis 8:259–266CrossRefGoogle Scholar
  372. Tobacman JK (2001) Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect 109:983–994PubMedCrossRefGoogle Scholar
  373. Torsdottir I, Alpsten M, Holm G, Sandberg AS, Tolli J (1991) A small dose of soluble alginate-fiber affects postprandial glycemia and gastric-emptying in humans with diabetes. J Nutr 121:795–799PubMedGoogle Scholar
  374. Tseng CK (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13:375–380CrossRefGoogle Scholar
  375. Tsuchiya Y (1969) Comparative hypocholesterolemic activities of marine algae. Proceeding of the International Seaweed Symposium 6:747–757Google Scholar
  376. Urbano MG, Goñi I (2002) Bioavailability of nutrients in rats fed on edible seaweeds, nori (Porphyra tenera) and wakame (Undaria pinnatifida), as a source of dietary fibre. Food Chem 76:281–286CrossRefGoogle Scholar
  377. Usov AI, Smirnova GP, Klochkova NG (2001) Polysaccharides of algae: 55. Polysaccharide composition of several brown algae from Kamchatka. Russ J Bioorgan Chem 27:395–399CrossRefGoogle Scholar
  378. Vadas S, Wright WA, Beal BF (2004) Biomass and productivity of intertidal rockweeds (Ascophyllum nodosum LeJolis) in Cobscook Bay. Northeastern Naturalist 11:123–142CrossRefGoogle Scholar
  379. Vairappan CS, Suzuki M, Abe T, Masuda M (2001) Halogenated metabolites with antibacterial activity from the Okinawan Laurencia species. Phytochemistry 58:517–523PubMedCrossRefGoogle Scholar
  380. Valente LMP, Gouveia A, Rema P, Matos J, Gomes EF, Pinto IS (2006) Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 252:85–91CrossRefGoogle Scholar
  381. van de Velde F, Lourenco ND, Pinheiro HM, Bakker M (2002) Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv Synth Catal 344:815–835CrossRefGoogle Scholar
  382. van Netten C, Hoption Cann SA, Morley DR, van Netten JP (2000) Elemental and radioactive analysis of commercially available seaweed. Sci Total Environ 255:169–175PubMedCrossRefGoogle Scholar
  383. Vaugelade P, Hoebler C, Bernard F, Guillon F, Lahaye M, Duee PH, Darcy-Vrillon B (2000) Non-starch polysaccharides extracted from seaweed can modulate intestinal absorption of glucose and insulin response in the pig. Reprod Nutr Dev 40:33–47PubMedCrossRefGoogle Scholar
  384. Ventura MR, Castañón JIR (1998) The nutritive value of seaweed (Ulva lactuca) for goats. Small Rumin Res 29:325–327CrossRefGoogle Scholar
  385. Verdrengh M, Erlandsson-Harris H, Tarkowski A (2000) Role of selectins in experimental Staphylococcus aureus-induced arthritis. Eur J Immunol 30:1606–1613PubMedCrossRefGoogle Scholar
  386. Vlieghe P, Clerc T, Pannecouque C, Witvrouw M, De Clercq E, Salles JP, Kraus JL (2002) Synthesis of new covalently bound kappa-carrageenan-AZT conjugates with improved anti-HIV activities. J Med Chem 45:1275–1283PubMedCrossRefGoogle Scholar
  387. Voet D, Voet J, Pratt CW (1999) Fundamentals of biochemistry. Wiley, New York, 1095 ppGoogle Scholar
  388. von Elbe JH, Schwartz SJ (1996) Colorants. In: Fennema OR (ed) Food chemistry. Marcel Dekker, New York, pp 651–722Google Scholar
  389. Wahbeh MI (1997) Amino acid and fatty acid profiles of four species of macroalgae from Aqaba and their suitability for use in fish diets. Aquaculture 159:101–109CrossRefGoogle Scholar
  390. Wang WT, Zhou JH, Xing ST (1994) Immunomodulating action of marine algae sulfated polysaccharides on normal and immunosuppressed mice. Chin J Pharm Toxicol 8:199–202Google Scholar
  391. Wang GC, Sun HB, Fan X, Tseng CK (2002) Large-scale isolation and purification of R-phycoerythrin from red alga Palmaria palmata using the expanded bed adsorption method. Acta Bot Sin 44:541–546Google Scholar
  392. Wang Y, Han F, Hu B, Li JB, Yu WG (2006) In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr Res 26:597–603CrossRefGoogle Scholar
  393. Wang J, Zhang QB, Zhang ZS, Li Z (2008) Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol 42:127–132PubMedCrossRefGoogle Scholar
  394. Washington N, Denton G (1995) Effect of alginate and alginate–cimetidine combination therapy on stimulated postprandial gastro-oesophageal reflux. J Pharm Pharmacol 47:879–882PubMedCrossRefGoogle Scholar
  395. Weinberger F (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol Bull 213:290–302PubMedCrossRefGoogle Scholar
  396. Wen X, Peng CL, Zhou HC, Lin ZF, Lin GZ, Chen SW, Li P (2006) Nutritional composition and assessment of Gracilaria lemaneiformis Bory. J Integr Plant Biol 48:1047–1053CrossRefGoogle Scholar
  397. Whittaker MH, Frankos VH, Wolterbeek AMP, Waalkens-Berendsen DH (2000) Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: clinical and experimental evidence. Am J Med 109:600–601PubMedCrossRefGoogle Scholar
  398. Wikipedia (2010), accessed 25 June 2010
  399. Witvrouw M, DeClercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol Vasc Syst 29:497–511Google Scholar
  400. Wong KH, Cheung PCK (2000) Nutritional evaluation of some subtropical red and green seaweeds. Part I—proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71:475–482CrossRefGoogle Scholar
  401. Wong K, Cheung PC (2001a) Influence of drying treatment on three Sargassum species. 2. Protein extractability, in vitro protein digestibility and amino acid profile of protein concentrates. J Appl Phycol 13:51–58CrossRefGoogle Scholar
  402. Wong K, Cheung PC (2001b) Influence of drying treatment on three Sargassum species. 1. Proximate composition, amino acid profile and some physico-chemical properties. J Appl Phycol 13:43–50CrossRefGoogle Scholar
  403. Wong KH, Cheung PCK (2001c) Nutritional evaluation of some subtropical red and green seaweeds. Part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chem 72:11–17CrossRefGoogle Scholar
  404. Wright AD, Goclik E, Konig GM (2003) Three new sesquiterpenes from the red alga Laurencia perforata. J Nat Prod 66:435–437PubMedCrossRefGoogle Scholar
  405. Wu XW, Yang ML, Huang XL, Yan J, Luo Q (2003) Effect of fucoidan on splenic lymphocyte apoptosis induced by radiation. Chin J Radiol Med Prot 23:43–50Google Scholar
  406. Xu WJ, Liao XJ, Xu SH, Diao JZ, Du B, Zhou XL, Pan SS (2008) Isolation, structure determination, and synthesis of galaxamide, a rare cytotoxic cyclic pentapeptide from a marine algae Galaxaura filamentosa. Org Lett 10:4569–4572PubMedCrossRefGoogle Scholar
  407. Xue CH, Chen L, Li ZJ, Cai YP, Lin H, Fang Y (2004) Antioxidative activities of low molecular fucoidans from kelp Laminaria japonica. Dev Food Sci 42:139–145CrossRefGoogle Scholar
  408. Yamamoto I, Takahashi M, Tamura E, Maruyama H, Mori H (1984) Antitumor-activity of edible marine-algae—effect of crude fucoidan fractions prepared from edible brown seaweeds against L-1210 leukemia. Hydrobiologia 116:145–148CrossRefGoogle Scholar
  409. Yan XJ, Chuda Y, Suzuki M, Nagata T (1999) Fucoxanthin as the major antioxidant in Hijikia fusiformis, a common edible seaweed. Biosci Biotechnol Biochem 63:605–607PubMedCrossRefGoogle Scholar
  410. Yan XJ, Zheng L, Chen HM, Lin W, Zhang WW (2004) Enriched accumulation and biotransformation of selenium in the edible seaweed Laminaria japonica. J Agric Food Chem 52:6460–6464PubMedCrossRefGoogle Scholar
  411. Yang XL, Sun JY, Xu HN (1995) An experimental study on immunoregulatory effect of fucoidan. Chin J Mar Drugs 14:909–913Google Scholar
  412. Yasui A, Tsutsumi C, Toda S (1978) Selective determination of inorganic arsenic(III), (V) and organic arsenic in biological materials by solvent extraction atomic absorption spectrophotometry. Agric Biol Chem 42:2139–2145CrossRefGoogle Scholar
  413. Ye H, Wang K, Zhou C, Liu J, Zeng X (2008) Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem 111:428–432CrossRefGoogle Scholar
  414. Ying P, Shakibaei M, Patankar MS, Clavijo P, Beavis RC, Clark GF, Frevert U (1997) The malaria circumsporozoite protein: Interaction of the conserved regions I and II-plus with heparin-like oligosaccharides in heparan sulfate. Exp Parasitol 85:168–182Google Scholar
  415. Yone Y, Furuichi M, Urano K (1986) Effects of wakame Undaria pinnatifida and Ascophyllum nodosum on absorption of dietary nutrients, and blood sugar and plasma free amino-N levels of red sea bream. Bull Jpn Soc Sci Fish 52:1817–1819Google Scholar
  416. Young EG, Smith DG (1958) Amino acids, peptides, and proteins of Irish moss, Chondrus crispus. J Biol Chem 233:406–410PubMedGoogle Scholar
  417. Yuan YV (2008) Marine algal constituents. In: Barrow C, Shahidi F (eds) Marine neutraceuticals and functional foods. CRC, Boca Raton, pp 297–320Google Scholar
  418. Yuan YV, Walsh NA (2006) Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 44:1144–1150PubMedCrossRefGoogle Scholar
  419. Yuan YV, Carrington MF, Walsh NA (2005) Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 43:1073–1081PubMedCrossRefGoogle Scholar
  420. Zaragoza MC, Lopez D, Saiz MP, Poquet M, Perez J, Puig-Parellada P, Marmol F, Simonetti P, Gardana C, Lerat Y et al. (2008) Toxicity and antioxidant activity in vitro and in vivo of two Fucus vesiculosus extracts. J Agric Food Chem 56:7773–7780Google Scholar
  421. Zee S (1991) Body weight loss with the aid of alginic acid. Arc Intern Med 3-4:113–114Google Scholar
  422. Zeitlin L, Whaley KJ, Hegarty TA, Moench TR, Cone RA (1997) Tests of vaginal microbicides in the mouse genital herpes model. Contraception 56:329–335PubMedCrossRefGoogle Scholar
  423. Zeitoun P, Salmon L, Bouche O, Jolly, D, Thiefin G (1998) Outcome of erosive/ulcerative reflux oesophagitis in 181 consecutive patients 5 years after diagnosis. Ital J Gastroenterol Hepatol 30:470–474Google Scholar
  424. Zhang QB, Li N, Zhou GF, Lu XL, Xu ZH, Li Z (2003) In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res 48:151–155PubMedCrossRefGoogle Scholar
  425. Zhang JZ, Tiller C, Shen JK, Wang C, Girouard GS, Dennis D, Barrow CJ, Miao MS, Ewart HS (2007) Antidiabetic properties of polysaccharide- and polyphenolic-enriched fractions from the brown seaweed Ascophyllum nodosum. Can J Physiol Pharmacol 85:1116–1123PubMedCrossRefGoogle Scholar
  426. Zhao X, Xue CH, Li BF (2008) Study of antioxidant activities of sulfated polysaccharides from Laminaria japonica. J Appl Phycol 20:431–436CrossRefGoogle Scholar
  427. Zhou G, Sheng W, Yao W, Wang C (2006a) Effect of low molecular [lambda]-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol Res 53:129–134PubMedCrossRefGoogle Scholar
  428. Zhou Y, Yang HS, Hu HY, Liu Y, Mao YZ, Zhou H, Xu XL, Zhang FS (2006b) Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of North China. Aquaculture 252:264–276CrossRefGoogle Scholar
  429. Zhuang C, Itoh H, Mizuno T, Ito H (1995) Antitumor active fucoidan from the brown seaweed, Umitoranoo (Sargassum thunbergii). Biosci Biotechnol Biochem 59:563–567PubMedCrossRefGoogle Scholar
  430. Zou Y, Qian ZJ, Li Y, Kim MM, Lee SH, Kim SK (2008) Antioxidant effects of phlorotannins isolated from Ishige okamurae in free radical-mediated oxidative systems. J Biotechnol 136:S579–S580CrossRefGoogle Scholar
  431. Zubia M, Payri C, Deslandes E (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J Appl Phycol 20:1033–1043CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Division of Industrial Food ResearchDTU National Food InstituteKgs. LyngbyDenmark
  2. 2.Ocean Harvest TechnologyCo. GalwayIreland

Personalised recommendations