Skip to main content

Genome size and phylogenetic analysis of the A and L races of Botryococcus braunii

Abstract

Botryococcus braunii (Chlorophyta, Botryococcaceae) is a colony-forming green microalga that produces large amounts of liquid hydrocarbons, which can be converted into transportation fuels. There are three different races of B. braunii, A, B, and L, that are distinguished based on the type of hydrocarbon each produces. Each race also has many strains that are distinguished by the location from which they were collected. While B. braunii has been well studied for the chemistry of the hydrocarbon production, very little is known about the molecular biology of B. braunii. To begin to address this problem, we determined the genome size of the A race, Yamanaka strain, and the L race, Songkla Nakarin strain, of B. braunii. Flow cytometry analysis indicates that the A race of B. braunii has a genome size of 166.0 ± 0.4 Mb, while the L race has a substantially larger genome size at 211.3 ± 1.7 Mb. We also used phylogenetic analysis with the nuclear small subunit (18S) rRNA gene to classify strains of the A and B races that have not yet been compared evolutionarily to previously published B. braunii phylogenetics. The analysis suggests that the evolutionary relationship between B. braunii races is correlated with the type of liquid hydrocarbon they produce.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Adam P, Schaeffer P, Albrecht P (2006) C40 monoaromatic lycopane derivatives as indicators of the contribution of the alga Botryococcus braunii race L to the organic matter of Messel oil shale (Eocene, Germany). Org Geochem 37:584–596

    Article  CAS  Google Scholar 

  • Audino M, Grice K, Alexander R, Kagi RI (2002) Macrocyclic alkanes in crude oils from the algaenan of Botryococcus braunii. Org Geochem 33:979–984

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    PubMed  Article  CAS  Google Scholar 

  • Behar F, Derenne S, Largeau C (1995) Closed pyrolyses of the isoprenoid algaenan of Botryococcus braunii, L race: geochemical implications for derived kerogens. Geochim Cosmochim Acta 59:2983–2997

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    PubMed  Article  CAS  Google Scholar 

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909

    Article  CAS  Google Scholar 

  • Biemont C (2008) Genome size evolution: within-species variation in genome size. Heredity 101:297–298

    PubMed  Article  CAS  Google Scholar 

  • Bosco G, Campbell P, Leiva-Neto JT, Markow TA (2007) Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics 177:1277–1290

    PubMed  Article  CAS  Google Scholar 

  • Brassel SC, Eglinton G, Mo FJ (1986) Biological marker compounds as indicator of the depositional history of the Maoming oil shale. Org Geochem 10:927–941

    Article  Google Scholar 

  • Cane RF (1977) Coorongite, balkashite and related substances—an annotated bibliography. Trans R Soc S Aust 101:153–154

    Google Scholar 

  • Chapman AD (2005) Numbers of living species in Australia and the world. Report for the Department of the Environment and Heritage, pp 1–64

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    PubMed  Article  CAS  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    PubMed  Article  CAS  Google Scholar 

  • Cullis CA (2005) Mechanisms and control of rapid genomic changes in flax. Ann Bot (Lond) 95:201–206

    Article  CAS  Google Scholar 

  • Davison J, Tyagi A, Comai L (2007) Large-scale polymorphism of heterochromatic repeats in the DNA of Arabidopsis thaliana. BMC Plant Biol 7:44. doi:10.1186/1471-2229-7-44

    PubMed  Article  Google Scholar 

  • Derenne S, Largeau C, Casadevall E, Berkaloff C (1989) Occurrence of a resistant biopolymer in the L race of Botryococcus braunii. Phytochemistry 28:1137–1142

    Article  CAS  Google Scholar 

  • Devarenne TP, Shin DH, Back K, Yin S, Chappell J (1998) Molecular characterization of tobacco squalene synthase and regulation in response to fungal elicitor. Arch Biochem Biophys 349:205–215

    PubMed  Article  CAS  Google Scholar 

  • Doležel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot (Lond) 95:99–110

    Article  Google Scholar 

  • Doležel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytom A 51:127–128, author reply 129

    Google Scholar 

  • Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    PubMed  Article  CAS  Google Scholar 

  • Glikson M, Lindsay K, Saxby J (1989) Botryococcus—A planktonic green alga, the source of petroleum through the ages: transmission electron microscopical studies of oil shales and petroleum source rocks. Org Geochem 14:595–608

    Article  CAS  Google Scholar 

  • Gregory TR, Johnston JS (2008) Genome size diversity in the family Drosophilidae. Heredity 101:228–238

    PubMed  Article  CAS  Google Scholar 

  • Grung M, Metzger P, Liaaen-Jensen S (1989) Primary and secondary carotenoids in two races of the green alga Botryococcus braunii. Biochem Syst Ecol 17:263–269

    Article  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    PubMed  Article  Google Scholar 

  • Hall BG (2001) Phylogenetic trees made easy: a how-to manual for molecular biologists. Sinauer, Sunderland

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    PubMed  Article  CAS  Google Scholar 

  • Jazwinski SM (1990) Preparation of extracts from yeast. Methods Enzymol 182:154–174

    PubMed  Article  CAS  Google Scholar 

  • Johnston JS, Ross LD, Beani L, Hughes DP, Kathirithamby J (2004) Tiny genomes and endoreduplication in Strepsiptera. Insect Mol Biol 13:581–585

    PubMed  Article  CAS  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    PubMed  Article  CAS  Google Scholar 

  • Johnston JS, Yoon KS, Strycharz JP, Pittendrigh BR, Clark JM (2007) Body lice and head lice (Anoplura: Pediculidae) have the smallest genomes of any hemimetabolous insect reported to date. J Med Entomol 44:1009–1012

    PubMed  Article  Google Scholar 

  • Kapraun DF (2005) Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. Ann Bot 95:7–44

    PubMed  Article  CAS  Google Scholar 

  • Kapraun DF (2007) Nuclear DNA content estimates in green algal lineages: Chlorophyta and Streptophyta. Ann Bot 99:677–701

    PubMed  Article  CAS  Google Scholar 

  • Knights BA, Brown AC, Conway E, Middleditch BS (1970) Hydrocarbons from the green form of the freshwater alga Botryococcus braunii. Phytochemistry 9:1317–1324

    Article  CAS  Google Scholar 

  • Kribii R, Arro M, Del Arco A, Gonzalez V, Balcells L, Delourme D, Ferrer A, Karst F, Boronat A (1997) Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase—involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Eur J Biochem 249:61–69

    PubMed  Article  CAS  Google Scholar 

  • Mastalerz M, Hower JC (1996) Elemental composition and molecular structure of Botryococcus alginite in Westphalian cannel coals from Kentucky. Org Geochem 24:301–308

    Article  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin IT, Maruyama S, Takahara M, Miyagishima et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    PubMed  Article  CAS  Google Scholar 

  • Maxwell JR, Douglas AG, Eglinton G, McCornick A (1968) Botryococcenes-hydrocarbons of novel structure from the alga Botryococcus braunii Kutzing. Phytochemistry 7:2157–2171

    Article  CAS  Google Scholar 

  • McKirdy DM, Cox RE, Volkman JK, Howell VJ (1986) Botryococcanes in a new class of Australian on-marine crude oils. Nature 320:57–59

    Article  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    PubMed  Article  CAS  Google Scholar 

  • Metzger P, Casadevall E (1987) Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Lett 28:3911–3934

    Article  Google Scholar 

  • Metzger P, Berkaloff C, Casadevall E, Coute A (1985a) Alkadiene-producing and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312

    Article  CAS  Google Scholar 

  • Metzger P, Casadevall E, Pouet MJ, Pouet Y (1985b) Structures of some botryococcenes: branched hydrocarbons from the B-race of the green alga Botryococcus braunii. Phytochemistry 24:2995–3002

    Article  CAS  Google Scholar 

  • Metzger P, Templier J, Largeau C, Casadevall E (1986) An n-alkatriene and some n-alkadienes from the A race of the green alga Botryococcus braunii. Phytochemistry 25:1869–1872

    Article  CAS  Google Scholar 

  • Metzger P, David M, Casadevall E (1987) Biosynthesis of triterpenoid hydrocarbons in the B-race of the green alga Botryococcus braunii. Sites of production and nature of the methylating agent. Phytochemistry 26:129–134

    Article  Google Scholar 

  • Metzger P, Casadevall E, Couté A (1988) Botryococcene distribution in strains of the green alga Botryococcus braunii. Phytochemistry 27:1383–1388

    Article  CAS  Google Scholar 

  • Metzger P, Allard B, Casadevall E, Berkaloff C, Coute A (1990) Structure and chemistry of a new chemical race of Botryococcus braunii. J Phycol 26:258–266

    Article  CAS  Google Scholar 

  • Metzger P, Pouet Y, Bischoff R, Casadevall E (1993) An aliphatic polyaldehyde from Botryococcus braunii (A race). Phytochem 32:875–883

    Article  CAS  Google Scholar 

  • Metzger P, Rager MN, Fosse C (2008) Braunicetals: acetals from condensation of macrocyclic aldehydes and terpene diols in Botryococcus braunii. Phytochem 69:2380–2386

    Article  CAS  Google Scholar 

  • Moldowan JM, Seifert WK (1980) First discovery of botryococcane in petroleum. JCS Chem Comm 19:912–914

    Article  Google Scholar 

  • Okada S, Murakami M, Yamaguchi K (1995) Hydrocarbon composition of newly isolated strains of the green microalga Botryococcus braunii. J Appl Phycol 7:555–559

    Article  CAS  Google Scholar 

  • Okada S, Devarenne TP, Chappell J (2000) Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Arch Biochem Biophys 373:307–317

    PubMed  Article  CAS  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226

    PubMed  Article  CAS  Google Scholar 

  • Sawayama S, Inoue S, Yokoyama S (1995) Phylogenetic position of Botryococcus braunii (Chlorophyceae) based on small subunit ribosomal RNA sequence data. J Phycol 31:419–420

    Article  CAS  Google Scholar 

  • Senousy HH, Beakes GW, Hack E (2004) Phylogenetic placement of Botryococcus braunii (Trebouxiophyceae) and Botryococcus sudeticus isolate UTEX 2629 (Chlorophyceae). J Phycol 40:412–423

    Article  CAS  Google Scholar 

  • Stasiuk LD (1999) Confocal laser scanning fluorescence microscopy of Botryococcus alginite from boghead oil shale, Boltysk, Ukraine: selective preservation of various micro-algal components. Org Geochem 30:1021–1026

    Article  CAS  Google Scholar 

  • Summons RE, Metzger P, Largeau C, Murray AP, Hope JM (2002) Polymethylsqualanes from Botryococcus braunii in lacustrine sediments and crude oils. Org Geochem 33:99–109

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  Article  CAS  Google Scholar 

  • Templier J, Largeau C, Casadevall E (1984) Hydrocarbon formation in the green-alga Botryococcus braunii. 4. Mechanism of non-isoprenoid hydrocarbon biosynthesis in Botryococcus braunii. Phytochemistry 23:1017–1028

    Article  CAS  Google Scholar 

  • Templier J, Largeau C, Casadevall E (1991) Biosynthesis of normal alkatrienes in Botryococcus braunii. Phytochemistry 30:2209–2215

    Article  CAS  Google Scholar 

  • Testa M, Gerbaudo S, Andri E (2001) Botryococcus Colonies in Miocene Sediments in the Western Woodlark Basin, Southwest Pacific (ODP Leg 180). Proc Ocean Drill Program Sci Results 180:1–6

    Google Scholar 

  • Traverse A (1955) Occurrence of the oil-forming alga Botryococcus in lignites and other Tertirary sediments. Micropaleontology 1:343–348

    Article  Google Scholar 

  • Weiss TL, Johnston JS, Fujisawa K, Sumimoto K, Okada S, Chappell J, Devarenne TP (2010) Phylogenetic placement, genome size, and GC-content of the liquid hydrocarbon producing green microalga Botryococcus braunii var. Berkeley (Showa) (Chlorophyta). J Phycol 46:634–540

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Margaret E. Glasner from the Department of Biochemistry and Biophysics at Texas A&M University for help with the phylogenetic analysis. This work was supported by Texas A&M University Department of Biochemistry & Biophysics start-up funds to T.P.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy P. Devarenne.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weiss, T.L., Johnston, J.S., Fujisawa, K. et al. Genome size and phylogenetic analysis of the A and L races of Botryococcus braunii . J Appl Phycol 23, 833–839 (2011). https://doi.org/10.1007/s10811-010-9586-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9586-7

Keywords

  • 18S rRNA sequences
  • Botryococcus braunii
  • Genome size
  • Green algae hydrocarbons
  • Phylogenetics