Skip to main content

Advertisement

Log in

Chemopreventive effect of Padina boergesenii extracts on ferric nitrilotriacetate (Fe-NTA)-induced oxidative damage in Wistar rats

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The present study was designed to investigate the prophylactic effect of extracts of the brown alga Padina boergesenii against potent nephrotoxic agent ferric nitrilotriacetate (Fe-NTA), in blood circulation of rats. Administration of Fe-NTA for seven consecutive days significantly enhanced lipid peroxidation accompanied with reduction in glutathione content. Together with this, the level of antioxidant enzymes, glutathione peroxidase, superoxide dismutase, and catalase was significantly (P < 0.05) diminished. Pretreatment of rats with P. boergesenii (150 mg kg−1 body weight) reversed Fe-NTA-induced oxidative damage in lipid peroxidation and glutathione content significantly (P < 0.05). Further, the activity of antioxidant enzymes was also restored significantly. In order to assess the role of polyphenolic components in the relevant activity, phenolic contents of the extract was found to be 1.78 ± 0.02% in the methanol extract and 1.30 ± 0.30% in the diethyl ether extract. Hence, the present results confirm that the brown alga P. boergesenii preclude its role in Fe-NTA-induced oxidative damage and hyperproliferative response in circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ames BN (1983) Dietary carcinogens and anticarcinogens: oxygen radicals and degenerative diseases. Science 221:1256–1264

    Article  PubMed  CAS  Google Scholar 

  • Anila L, Vijayalakshmi NR (2002) Flavonoids from Emblica officinalis and Mangifera indica—effectiveness for dyslipidemia. J Ethnopharmacol 79:81–87

    Article  PubMed  CAS  Google Scholar 

  • Ansar S, Iqbal M, Athar M (1999) Nordihydroguairetic acid is a potent inhibitor of ferricnitrilotriacetate-mediated hepatic and renal toxicity, and renal tumour promotion, in mice. Carcinogenesis 20:599–606

    Article  PubMed  CAS  Google Scholar 

  • Athar M, Iqbal M (1998) Ferric nitrilotriacetate promotes N-diethylnitrosoamine-induced renal tumorigenesis in rat: implications for the involvement of oxidative stress. Carcinogenesis 19:1133–1139

    Article  PubMed  CAS  Google Scholar 

  • Awai M, Narasaki M, Yamanoi Y, Seno S (1979) Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol 95:663–672

    PubMed  CAS  Google Scholar 

  • Bhaskar N, Miyashita K (2005) Lipid composition of Padina tetrastromatica (Dictyotales, Phaeophyta), a brown seaweed of the west coast of India. Ind J Fish 52:263–268

    Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism and nutritional significance. Nutr Rev 56:317–333

    Article  PubMed  CAS  Google Scholar 

  • Chkhikvishvili ID, Ranazanov ZM (2000) Phenolic substances of brown algae and their antioxidant activity. Appl Biochem Microbiol 36:336–338

    Article  CAS  Google Scholar 

  • Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC Handbook of methods for oxygen radical research. CRC, Boca Raton, pp 283–284

    Google Scholar 

  • Cook NC, Samman S (1996) Flavonoids: chemistry, metabolism, cardioprotective effects and dietary sources. J Nutr Biochem 7:66–76

    Article  CAS  Google Scholar 

  • Ellman GC (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Iqbal M, Rezazadeh H, Ansar S, Athar M (1998) α-Tocopherol (vitamin-E) ameliorates ferric nitrilotriacetate (Fe-NTA)-dependent renal proliferative response and toxicity: diminution of oxidative stress. Human Exp Toxicol 17:163–171

    Article  CAS  Google Scholar 

  • Iqbal M, Sharma SD, Rahman A (1999a) Evidence that ferric nitrilotriacetate mediates oxidative stress by down-regulating DTdiaphorase activity: implications for carcinogenesis. Cancer Lett 141:151–157

    Article  CAS  Google Scholar 

  • Iqbal M, Giri U, Giri DK et al (1999b) Age-dependent renal accumulation of 4-hydroxy-2-nonenal (HNE)-modified proteins following parenteral administration of ferric nitrilotriacetate commensurate with its differential toxicity: implications for the involvement of HNE-protein adducts in oxidative stress and carcinogenesis. Arch Biochem Biophys 365:101–112

    Article  CAS  Google Scholar 

  • Iqbal M, Okazaki Y, Okada S (2009) Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): implications for cancer prevention. Mol Cell Biochem 324:157–164

    Article  PubMed  CAS  Google Scholar 

  • Iwai K (2008) Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-Ay mice. Plant Foods Hum Nutr 63:163–169

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Escrig A, Jimenez-Jimenez I, Pulido R, Saura-Calixto F (2001) Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric 81:530–534

    Article  CAS  Google Scholar 

  • Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS et al (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  PubMed  CAS  Google Scholar 

  • Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    PubMed  CAS  Google Scholar 

  • Kang HS, Chung HY, Jung JH, Son BW, Choi JS (2003) A new phlorotannin from the brown alga Ecklonia stolonifera. Chem Pharm Bull 51:1012–1014

    Article  PubMed  CAS  Google Scholar 

  • Kang HS, Chung HY, Kim JY, Son BW, Jung HA, Choi JS (2004) Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch Pharm Res 27:194–198

    Article  PubMed  CAS  Google Scholar 

  • Kehrer JP (1993) Free radicals as mediators of tissue injury and disease. CRC Crit Rev Toxicol 23:21–48

    Article  CAS  Google Scholar 

  • Khan N, Sharma S, Sultana S (2004) Attenuation of potassium bromate-induced nephrotoxicity by coumarin (1,2-benzopyrone) in Wistar rats: chemoprevention against free radical-mediated renal oxidative stress and tumor promotion response. Redox Rep 9:19–28

    Article  PubMed  CAS  Google Scholar 

  • Lim SN, Cheung PCK, Ooi VEC, Ang PO (2002) Evaluation of antioxidative activity of extracts from brown seaweed, Sargassum siliquastrum. J Agric Food Chem 50:3862–3866

    Article  PubMed  CAS  Google Scholar 

  • Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller D (1984) Differential distribution of glutathione and glutathione related enzymes in rabbit kidney: possible implications in analgesic neuropathy. Cancer Res 44:5086–5091

    PubMed  CAS  Google Scholar 

  • Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fish Sci 62:923–926

    CAS  Google Scholar 

  • Nichans WG, Samuelson B (1972) Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130

    Google Scholar 

  • Okada S (1995) Iron-induced tissue damage and cancer: the role of reactive oxygen species-free radicals. Pathol Int 19:339–347

    Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rios JJ, Gutiérrez-Rosales F (2010) Comparison of methods extracting phenolic compounds from lyophilized and fresh olive pulp. LWT - Food Sci Tech 1–4

  • Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohyr Polym 69(3):530–537

    Article  CAS  Google Scholar 

  • Shahidi F, Naczk M (2004) Phenolics in food and nutraceuticals. CRC, Boca Raton

    Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1995) Strategies of antioxidant defense: relations to oxidative stress. In: Packer L, Wirtz K (eds) Signalling mechanisms from transcription factors to oxidative stress, Springer, Berlin, pp 165–186

    Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Sook HH, Young CH, Young KJ, Who SB, Ahand JH, Sue CJ (2004) Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch Pharm Res 27:194–198

    Article  Google Scholar 

  • Wang BG, Zhang WW, Duan XJ, Li XM (2009) In vitro antioxidative activities of extract and semi-purified fractions of the marine red alga, Rhodomela confervoides (Rhodomelaceae). Food Chem 113:1101–1105

    Article  CAS  Google Scholar 

  • Wattenberg LW (1985) Chemoprevention of cancer. Cancer Res 45:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role of inflammatory disease and progression to cancer. Biochem J 313:17–29

    PubMed  CAS  Google Scholar 

  • Wong CK, Ooi VEC, Ang PO (2000) Protective effects of seaweeds against liver injury caused by carbon tetrachloride in rats. Chemosphere 41:173–176

    Article  PubMed  CAS  Google Scholar 

  • Xi WY, En LZ, Fen HY, Hong XZ (2003) Inhibition of mouse liver lipid peroxidation by high molecular weight phlorotannis from Sargassum kjellmanianum. J Appl Phycol 15:507–511

    Article  Google Scholar 

  • Yuan YV, Walsh NA (2006) Antiooxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 44:1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Yuan YV, Bone DE, Carrington MF (2005) Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem 91:485–494

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. P. Subramanian, Reader, Department of Biochemistry and Biotechnology, Annamalai University for valuable support in technical aspects. The authors wish to thank Department of Biotechnology (DBT), India for the financial support. Finally, the authors would like to acknowledge the three anonymous referees for their constructive criticism and their help to clarify and improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajamani Karthikeyan or S. T. Somasundaram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthikeyan, R., Manivasagam, T., Anantharaman, P. et al. Chemopreventive effect of Padina boergesenii extracts on ferric nitrilotriacetate (Fe-NTA)-induced oxidative damage in Wistar rats. J Appl Phycol 23, 257–263 (2011). https://doi.org/10.1007/s10811-010-9564-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9564-0

Keywords

Navigation