Skip to main content

Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition

Abstract

Chlorella vulgaris is one of the best-studied phototrophic eukaryotes. From the 1950s on, C. vulgaris and some other algal species were cultivated in huge quantities to meet the growing demand for alternative protein sources. After drying, algal biomass can be merchandised as tablets, capsules, extract or powder with specific biochemical qualities. However, the products quality, e.g. the containing species, microbial contamination or content and quality of pigments varies enormously. In this study, commercial Chlorella products, unprocessed Chlorella powders and several production strains were investigated. Molecular analysis of the 18S rDNA confirmed either the existence of more than one species per product or only other green algae species in about half of the samples tested. Many of the examined samples contained critical amounts of bacterial contaminations. Furthermore, cyanobacteria were detected in some of the samples. The content of chlorophyll a varied greatly between the samples and pheophytin, a degradation product of chlorophyll, was detected in some samples in large concentrations. These data indicate that quality control of microalgal products is an important issue that should be addressed by the manufactures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Allard B, Templier J (2000) Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54:369–380

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16 S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Atkinson AW, Gunning ES, John CL (1972) Sporopollenin in the cell wall of Chlorella and other algae: Ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta 107:1–32

    Article  CAS  Google Scholar 

  • Bagchi D (2006) Nutraceuticals and functional foods regulations in the United States and around the world. Toxicology 221:1–3

    Article  CAS  PubMed  Google Scholar 

  • Becker EW (1994) Microalgae-biotechnology and microbiology. Cambridge University Press, Cambridge, p 304

    Google Scholar 

  • Becker EW (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Cambridge, pp 312–351

    Google Scholar 

  • Brown SB, Houghton JD, Hendry GAF (1991) Chlorophyll breakdown. In: Scheer H (ed) Chlorophylls. CRC, London, pp 465–489

    Google Scholar 

  • Chernomorsky S, Segelman A, Poretz RD (1999) Effect of dietary chlorophyll derivates on mutagenesis and tumor cell growth. Teratog Carcinog Mutagen 19:313–322

    Article  CAS  PubMed  Google Scholar 

  • Czygan FC (1968) Sekundär-Carotinoide in Grünalgen. Arch Microbiol 61:81–102

    CAS  Google Scholar 

  • Czygan FC (1982) Primäre und sekundäre Carotinoide in chlorokokkalen Grünalgen. Algol Stud 29:470–488

    Google Scholar 

  • Diez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Hirakawa K, Sinpo K (1990) Effect of long-term administration of Chlorella tablets on hyperlipemia. J Japanese Soc Nutrition Food Sci 43:167–173

    CAS  Google Scholar 

  • Grobbelaar JU (2003) Quality control and assurance: crucial for the sustainability of the applied phycology industry. J Appl Phycol 15:209–215

    Article  CAS  Google Scholar 

  • Gulati OP, Berry OP (2006) Legislation relating to nutraceuticals in the European Union with a particular focus on botanical-sourced products. Toxicology 221:75–87

    Article  CAS  PubMed  Google Scholar 

  • Hamby RK, Sim LE, Issel LE, Zimmer EA (1988) Direct RNA sequencing optimization of extraction and sequencing techniques for work with higher plants. Plant Mol Biol Reporter 6:179–197

    Google Scholar 

  • Huss VA, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BA, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). Phycologia 35:587–598

    Article  CAS  Google Scholar 

  • Jassby A (1988) Some public health aspects of the microalgal products. In: Lembi CA, Waaland JR (eds) Algae and human affairs 181–202. Cambridge University Press, Cambridge

    Google Scholar 

  • Jeffrey SW, Welschmeyer NA (1997) Spectrophotometric and fluorometric equations in common use in oceanography. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography—guidelines to modern methods. UNESCO, Paris, pp 597–615

    Google Scholar 

  • Jensen GS, Ginsberg DI, Drapeau MS (2001) Blue-green algae as immuno-enhancer and biomodulator. J Am Nutraceutical Assoc 3:24–30

    Google Scholar 

  • Kaebernick M, Neilan BA (2001) Ecological and molecular investigations of cyanotoxin production. Microbiol Ecol 35:1–9

    Article  CAS  Google Scholar 

  • Kessler E (1976) Comparative physiology, biochemistry, and the taxonomy of Chlorella (Chlorophyceae). Plant Syst Evol 125(3):129–138

    Article  Google Scholar 

  • Kessler E, Huss VA (1992) Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (Chlorophyceae) strains of the Culture Collection of the University Texas at Austin. J Phycol 28(4):550–553

    Article  Google Scholar 

  • Komárek J, Fott B (1983) Chlorophyceae (Grünalgen) Ordnung: Chlorococcales. In: Huber-Pestalozzi G (ed) Das Phytoplankton des Süßwassers. 7. Teil, 1. Hälfte, 1-1044, E.Schweizerbart’sche Verlagsbuchahndlung (Nägele u. Obermiller). Stuttgart, Germany

    Google Scholar 

  • Krienitz L, Hegewald EH, Hepperle D, Huss VA, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43(5):529–542

    Google Scholar 

  • Liang S, Liu X, Chen F, Chen Z (2004) Current microalgal health food R&D activities in China. Hydrobiologia 512:45–48

    Article  Google Scholar 

  • Lorenzen J (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • Maxwell DP, Falk S, Trick CG, Huner NPA (1994) Growth at low-temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 150(2):535–543

    Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16 S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  • Müller J, Friedl T, Hepperle D, Lorenz M, Day JG (2005) Distinction between multiple isolates of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing for conspecificity using amplified fragment length polymorphism and its rDNA sequences. J Phycol 41:1236–1247

    Article  CAS  Google Scholar 

  • Noda K, Ohno N, Tanaka K, Kamiya N, Okuda M, Yadomae T, Nomoto K, Shoyama Y (1996) A water-soluble antitumor glycoprotein from Chlorella vulgaris. Planta Med 62:423–426

    Article  CAS  PubMed  Google Scholar 

  • Norton TA, Melkonian M, Andersen RA (1996) Algal biodiversity. Phycologia 35(4):308–326

    Article  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR Primers to amplify 16 S rRNA genes from Cyanobacteria. Appl Environ Microbiol 63:3327–3332

    PubMed  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular Engineering 20:459–466

    Article  CAS  PubMed  Google Scholar 

  • Ouellette AJA, Wilhelm SW (2003) Toxic cyanobacteria: the evolving molecular toolbox. Front Ecol Environ 1:359–366

    Article  Google Scholar 

  • Ördög V, Stirk WA, Lenobel R, Bancírová M, Strnad M, van Staden J, Szigeti J, Németh L (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol 16:309–314

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrosc. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Porter KG (1973) Selective grazing and differential digestion of algae by zooplankton. Nature 244:179–180

    Article  Google Scholar 

  • Pratt R (1944) Chlorellin, an antibacterial substance from Chlorella. Science 99(2574):351–352

    Article  CAS  PubMed  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Pulz O, Scheibenbogen K, Groß W (2001) Biotechnology with Cyanobacteria and Microalgae. In: Rehm H-J, Reed G (eds) Biotechnology volume 10 special processes, 2nd edn. WILEY, Germany, pp 105–136

    Google Scholar 

  • Richmond A (1999) Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In: Cohen Z (ed) Chemicals from Microalgae 353–358. Taylor & Francis, London

    Google Scholar 

  • Sano T, Tanaka Y (1987) Effect of dried, powdered Chlorella vulgaris on experimental atherosclerosis and alimentary hypercholesterolemia in cholesterol-fed rabbits. Artery 115:217–224

    Google Scholar 

  • Schumann R, Häubner N, Klausch S, Karsten U (2005) Chlorophyll extraction methods for the quantification of green microalgae colonizing building facades. Int Biodeterior Biodegradation 55:213–222

    Article  CAS  Google Scholar 

  • Sogin ML, Gunderson JH (1987) Structural diversity of eukaryotic small subunit ribosomal RNAs. Ann N Y Acad Sci 503:125–139

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Suárez ER, Kralovec JA, Noseda MD, Ewart HS, Barrow CJ, Lumsden MD, Grindley TB (2005) Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydr Res 340:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Suárez ER, Syvitski R, Kralovec JA, Noseda MD, Barrow CJ, Ewart HS, Lumsden MD, Grindley TB (2006) Immunostimulatory polysaccharides from Chlorella pyrenoidosa. A new galactofuranan. Measurement of molecular weight and molecular weight dispersion by DOSY NMR. Biomacromolecules 7:2368–2376

    Article  PubMed  CAS  Google Scholar 

  • Takeda H (1991) Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae). J Phycol 27:224–232

    Article  CAS  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Cambridge, pp 178–214

    Google Scholar 

  • White, T.J., Bruns, T., Lee, S., Taylor, J. (1990). Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes For Phylogenetics. PCR Protocols: A Guide to Methods and Applications 315-322

  • Wilson KE, Huner NPA (2000) The role of growth rate, redox-state of the plastoquinone pool and the trans-thylakoid Delta pH in photoacclimation of Chlorella vulgaris to growth irradiance and temperature. Planta 212:93–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the workgroup from the Experimental Phycology and Culture Collection of Algae in Göttingen (EPSAG) and Martin Hagemann (Universität Rostock) for introduction in molecular methods. Prof. Pulz is gratefully thanked for providing part of the sample material. This study was financially supported by the Ministry of Education, Science and Culture Mecklenburg-Vorpommern, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Görs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Görs, M., Schumann, R., Hepperle, D. et al. Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition. J Appl Phycol 22, 265–276 (2010). https://doi.org/10.1007/s10811-009-9455-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-009-9455-4

Keywords

  • Chlorella vulgaris
  • Chlorella products
  • Microalgal biotechnology
  • Nutraceuticals
  • Dietary supplement
  • Chlorophyta