Skip to main content
Log in

Crypthecodinium cohnii with emphasis on DHA production: a review

Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid (PUFA) that belongs to the ω-3 group. In recent years, DHA has attracted much attention because of its recognized beneficial effect on human health. At present, fish oil is the major source of DHA, but it may be produced by microorganisms with additional benefits. Marine microorganisms may contain large amounts of DHA and are considered a potential source of this important fatty acid. Some of these organisms can be grown heterotrophically on organic substrates without light, offering the possibility of greatly increasing microalgal cell concentration under controlled and monitored conditions, resulting in a very high quality product. Among the heterotrophic marine dinoflagellates, Crypthecodinium cohnii has been identified as a prolific producer of DHA. The organism is extraordinary in that it produces no other PUFAs than DHA in its cell lipid in any significant amount, which makes the DHA purification process very attractive, particularly for pharmaceutical and nutraceutical applications. This paper reviews recent advances in the biotechnological production of DHA by C. cohnii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beach DH, Holz GG (1973) Environmental influences on the docosahexaenoate content of the triacylglycerols and phosphatidylcholine of a heterotrophic, marine dinoflagellate, Crypthecodinium cohnii. Biochim Biophys Acta 316:56–65

    PubMed  CAS  Google Scholar 

  • Beach DH, Harrington GW, Gellerman JL, Schlenk H, Holz GG (1974) Biosynthesis of oleic acid and docosahexaenoic acid by a heterotrophic marine dinoflagellate Crypthecodinium cohnii. Biochim Biophys Acta 369:16–24

    PubMed  CAS  Google Scholar 

  • Beam CA, Himes M (1974) Evidence for sexual fusion and recombination in the dinoflagellate Crypthecodinium (Gyrodinium) cohni. Nature 250:435–436 doi:10.1038/250435a0

    PubMed  CAS  Google Scholar 

  • Beam CA, Himes M (1977) Sexual isolation and genetic diversification among some strains of Crypthecodinium cohnii–like dinoflagellates. Evidence of speciation. J Protozool 24:532–539

    Google Scholar 

  • Beam CA, Himes M (1980) Utilization of carbon sources by different strains of Crpthecodinium cohnii Seligo. J Protozool 27:A37

    Google Scholar 

  • Beam CA, Himes M (1982) Distribution of members of the Crypthecodinium cohnii (Dinophyceae) species complex. J Protozool 29:8–15

    Google Scholar 

  • Beam CA, Himes M (1987) Electrophoretic characterization of members of the Crypthecodinium cohnii (Dinophyceae) species complex. J Protozool 34:204–217

    CAS  Google Scholar 

  • Beam CA, Himes M, Himelfarb J, Link C, Shaw K (1977) Genetic evidence of unusual meiosis in dinoflagellate Crypthecodinium cohnii. Genetics 87:19–32

    PubMed  Google Scholar 

  • Beam CA, Preparata RM, Himes M, Nanney DL (1993) Ribosomal RNA sequencing of members of the Crypthecodinium cohnii (Dinophyceae) species complex; comparison with soluble enzyme studies. J Eukaryot Microbiol 40:660–667 doi:10.1111/j.1550-7408.1993.tb06124.x

    PubMed  CAS  Google Scholar 

  • Berdalet E (1992) Effects of turbulence on the marine dinoflagellate Gymnodinium nelsonii. J Phycol 28:267–272 doi:10.1111/j.0022-3646.1992.00267.x

    Google Scholar 

  • Berdalet E, Estrada M (1993) Effects of turbulence on several dinoflagellate species. Dev Mar Biol 3:737–740

    Google Scholar 

  • Behrens PW, Thompson JM, Apt K, Pfeifer JW, Wynn JP, Lippmeier JC et al (2005) Production of high levels of DHA in microalgae using modified amounts of chloride and potassium. WO Patent 035775 A1

  • Bhaud Y, Soyer-Gobillard MO, Salmon JM (1988) Transmission of gametic nuclei through a fertilization tube during mating in a primitive dinoflagellate. Prorocentrum micans Ehr. J Cell Sci 89:197–206

    Google Scholar 

  • Bhaud Y, Salmon JM, Soyer-Gobillard MO (1991) The complex cell cycle of the dinoflagellate protoctist Crypthecodinium cohnii as studied in vivo and by cytofluorimetry. J Cell Sci 100:675–682

    Google Scholar 

  • Bhaud Y, Barbier M, Soyer-Gobillard MO (1994) A detailed study of complexe cell cycle of the dinoflagellate Crypthecodinium cohnii Biecheler and evidence for variation in histone H1 kinase activity. J Eukaryot Microbiol 41:519–526 doi:10.1111/j.1550-7408.1994.tb06052.x

    CAS  Google Scholar 

  • Bhaud Y, Guillebault D, Lennon JF, Defacque H, Soyer-Gobillard MO, Moreau H (2000) Morphology and behaviour of dinoflagellates chromosomes during the cell cycle and mitosis. J Cell Sci 113:1231–1239

    PubMed  CAS  Google Scholar 

  • Biecheler B (1952) Recherches sur les Péridiniens. Bull Biol Fr Belg 36:S1–S149

    Google Scholar 

  • Bourre JM (2005) Where to find ω-3 fatty acids and how feeding animals with diet enriched in ω-3 fatty acids to increase nutritional value of derived products for human: What is actually useful? J Nutr Health Aging 9:232–242

    PubMed  CAS  Google Scholar 

  • Borowitzka MA (1995) Patents. J Appl Phycol 7(5):509–520 doi:10.1007/BF00003937

    Google Scholar 

  • Boswell K, Koskelo EK, Carl L, Glaza S, Hensen DJ, Williams KD et al (1996) Preclinical evaluation of single cell oils that are highly enriched with arachidonic acid. Food Chem Toxicol 34:585–593 doi:10.1016/0278-6915(96)00019-1

    PubMed  CAS  Google Scholar 

  • Carroll KK (1986) Experimetal studies on dietary fat and cancer in relation to epidemiological data. In: Ip C, Birt DF, Rogers AE, Mettlin C (eds) Dietary fat and cancer - progress in chemical and biological research. Alan RL, New York, pp 231–248

    Google Scholar 

  • Calado R, Vitorino A, Reis A, Silva TL, Dinis MT (in press) Effect of different diets on larval production, quality and fatty acid profile of the marine ornamental shrimp Lysmata amboinensis (De Man, 1888). Aquacult Nutr

  • Carlson SE, Wilson WW (1994) Docosahexaenoic Acid (DHA) supplementation of preterm (Pt) infants - effect on the 12-month bayley mental developmental index (MDI). Pediatr Res 35:A20

    Google Scholar 

  • Chatton E (1952) Classe des Diniflagellates ou Péridiniens. In: Grassé PP (ed) Traité de Zoologie, vol 1, part 1. Masson, Paris, pp 309–406

    Google Scholar 

  • Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209 doi:10.1007/BF00003578

    CAS  Google Scholar 

  • Christensen JH, Skou HA, Madsen T, Torring I, Schmidt EB (2001) Heart rate variability and ω-3 polyunsaturated fatty acids in patients with diabetes mellitus. J Intern Med 249:545–552 doi:10.1046/j.1365-2796.2001.00841.x

    PubMed  CAS  Google Scholar 

  • Connor WE (2000) Importance of ω-3 fatty acids in health and disease. Am J Clin Nutr 71(Suppl.):171S–175S

    PubMed  CAS  Google Scholar 

  • Crawford MA (1993) The role of essential fatty acids in neural development: implications for perinatal nutrition. Am J Clin Nutr 57(Suppl.):703S–710S

    PubMed  CAS  Google Scholar 

  • Crawford MA, Costeloe K, Ghebremeskel K, Phlactos A, Skirvin L, Stacey F (1997) Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of pre-term babies? Am J Clin Nutr 66:1032S–1041S

    PubMed  CAS  Google Scholar 

  • Criggal JG, Trivedi NB, Hutton JR (2002) Pet foods using algal or fungal waste containing fatty acids. US Patent 6338866

  • Das UN, Fams MD (2003) Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory. Nutrition 19:62–65 doi:10.1016/S0899-9007(02)00852-3

    PubMed  CAS  Google Scholar 

  • de Swaaf ME (2003) Docosahexaenoic acid production by the marine alga Crypthecodinium cohnii. Doctoral thesis, Delft University, Delft University Press, The Nederlands

  • de Swaaf ME, Rijk TC, Eggink G, Sijtsma L (1999) Optimization of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. J Biotechnol 70:185–192 doi:10.1016/S0168-1656(99)00071-1

    Google Scholar 

  • de Swaaf ME, Grobben GJ, Eggink G, Rijk TC, Meer P, Sijtsma L (2001) Characterisation of extracellular polysaccharides produced by Crypthecodinium cohnii. Appl Microbiol Biotechnol 57:395–400 doi:10.1007/s002530100788

    PubMed  Google Scholar 

  • de Swaaf ME, de Rijk TC, van der Meer P, Eggink G, Sijtsma L (2003a) Analysis of docosahexaenoic acid biosynthesis in Crypthecodinium cohnii by 13C labelling and desaturase inhibitor experiments. J Biotechnol 103:21–29 doi:10.1016/S0168-1656(03)00070-1

    PubMed  Google Scholar 

  • de Swaaf ME, Pronk JT, Sijtsma L (2003b) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61:40–43

    PubMed  Google Scholar 

  • de Swaaf ME, Sijtsma L, Pronk JT (2003c) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672 doi:10.1002/bit.10513

    PubMed  Google Scholar 

  • Edwards RH, Peet M (1999) Essential fatty acid intake in relation to depression. In: Peet M, Glennm I, Horrobin DF (eds) Phospholipid spectrum disorder in psychiatry. Marius Press, Lancashire, p 211

    Google Scholar 

  • Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL (1993) A classification of fossil and living dinoflagellates. Micropaleontology Press Spec Pap 7:1–351

    Google Scholar 

  • Gold K, Baren CF (1966) Growth requirements of Gyrondinium cohnii. J Protozool 13:255–257

    CAS  Google Scholar 

  • Grima EM, Perez JAS, Camacho FG, Sánchez JL, Alonso DL (1993) ω-3 PUFA productivity in chemostat cultures of microalgae. Appl Microbiol Biotechnol 38:599–605 doi:10.1007/BF00182796

    Google Scholar 

  • Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91(10):1523–1534 doi:10.3732/ajb.91.10.1523

    CAS  Google Scholar 

  • Harel M, Koven W, Lein I, Bar Y, Behrens P, Stubblefield J et al (2002) Advanced DHA, EPA and ArA enrichment materials for marine aqualculture using single cell heterotrophs. Aquaculture 213:347–362 doi:10.1016/S0044-8486(02)00047-9

    CAS  Google Scholar 

  • Harrington GW, Holz GG (1968) The monoenoic docosahexaenoic fatty acids of a heterotrophic dinoflagellate. Biochim Biophys Acta 164:137–139

    PubMed  CAS  Google Scholar 

  • Henderson RJ, Mackinlay EE (1991) Polyunsaturated fatty acid metabolism in the marine dinoflagellate Crypthecodinium cohnii. Phytochemistry 30(6):1781–1787 doi:10.1016/0031-9422(91)85012-O

    CAS  Google Scholar 

  • Henderson RJ, Leftley JW, Sargent JR (1988) Lipid composition and biosynthesis in the marine dinoflagellate Crypthecodinium cohnii. Phytochemistry 27:1679–1683 doi:10.1016/0031-9422(88)80425-4

    CAS  Google Scholar 

  • Hejazi MA, Wijffels RH (2004) Milking of microalgae. Trends Biotechnol 22:189–194 doi:10.1016/j.tibtech.2004.02.009

    PubMed  CAS  Google Scholar 

  • Hibbeln JR, Salem JN (1995) Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nutr 62:1–9

    PubMed  CAS  Google Scholar 

  • Himes M, Beam CA (1975) Genetic analysis in dinoflagellate Crypthecodinium (Gyrodinium) cohnii: evidence for unusual meiosis. Proc Natl Acad Sci USA 72:4546–4549 doi:10.1073/pnas.72.11.4546

    PubMed  CAS  Google Scholar 

  • Himes M, Beam CA (1978) Further studies of breeding restrictions among Crypthecodnium cohnii-like dinoflagellates. Evidence of a new interbreeding group. J Protozool 25:378–380

    Google Scholar 

  • Holz GG, Beach DH (1980) Lipids of Crypthecodinium cohnii. J Protozool 27:A37–A37

    Google Scholar 

  • Ishida Y (1968) Physiological studies on evolution of dimethyl sulphide from unicellular marine alga. Meml Res Inst Sci Kyoto Univ 94:48–82

    Google Scholar 

  • Jiang Y, Chen F (1999) Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii. J Ind Microbiol Biotechnol 23:508–513 doi:10.1038/sj.jim.2900759

    CAS  Google Scholar 

  • Jiang Y, Chen F (2000a) Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochem 35:1205–1209 doi:10.1016/S0032-9592(00)00163-1

    CAS  Google Scholar 

  • Jiang Y, Chen F (2000b) Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. J Am Chem Soc 77:613–617 doi:10.1007/s11746-000-0099-0

    CAS  Google Scholar 

  • Jiang Y, Chen F, Liang SZ (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem 34:633–637 doi:10.1016/S0032-9592(98)00134-4

    CAS  Google Scholar 

  • Joordens JCA, Kuipers RS, Muskiet FAJ (2007) Preformed dietary DHA: The answer to a scientific question may in practice become translated to its opposite. Am J Hum Biol 19:582–584 doi:10.1002/ajhb.20675

    PubMed  Google Scholar 

  • Kofoid CA, Swezy O (1921) The free living unamored Dinoflagellata. Mem Universiry Calif 5:1–562

    Google Scholar 

  • Kubai DF, Ris H (1969) Division in the dinoflagellate Gyrodinium cohnii (Schiller). A new type of nuclear reproduction. J Cell Biol 40:508–528 doi:10.1083/jcb.40.2.508

    PubMed  CAS  Google Scholar 

  • Kyle DJ (1996) Production and use of a single cell oil which is highly enriched in docosahexaenoic acid. Lipid Technol 8:107–110

    Google Scholar 

  • Kyle DJ (2004) Use of docosahexaenoic acid for the manufacture of a medicament for the treatment of senile dementia and Alzheimer’s disease. Martek Bioscience Corporation. E Patent 1419780 A1

  • Kyle DJ, Reeb SE, Sicotte VJ (1991) Docosahexaenoic acid, methods for its production and compounds containing the same. Martek Corporation, WO Patent 9111918

  • Kyle DJ, Reeb SE, Sicotte VJ (1995) Production of Docosahexaenoic acid by dinoflagellates. Martek Corporation, Martek Corportarion, US Patent 5407957

  • Kyle DJ, Reeb SE, Sicotte VJ (1998) Dinoflagellate biomass, methods for its production, and compositions containing the same. Martek Bioscience Corporation, US Patent 5711983

  • Kwok ACM, Wong JTY (2003) Cellulose synthesis is coupled to cell cycle progression at G1 in the dinoflagellate Crypthecodinium cohnii. Plant Physiol 131:1681–1691 doi:10.1104/pp.102.018945

    PubMed  CAS  Google Scholar 

  • Kwok ACM, Wong JTY (2005) Lipid biosynthesis and its coordination with cell cycle progression. Plant Cell Physiol 46(12):1973–1986 doi:10.1093/pcp/pci213

    PubMed  CAS  Google Scholar 

  • Li D, Bode O, Drummond H, Sinclair AJ (2003) ω-3 fatty acids. In: Gunstone FD (ed) Lipids for functional foods and nutraceuticals. The Oily Press, New York, pp 225–262

    Google Scholar 

  • Liu G, Bibus DM, Bode AM, Ma WY, Holman RT, Dong Z (2001) ω-3 but not polyunsaturated fat content of canned meats commonly available in Australia. Food Aust 54:311–315

    Google Scholar 

  • Loeblich AR (1976) Dinoflagellate evolution: speculation and evidence. J Protozool 23:13–28

    PubMed  Google Scholar 

  • Mendes A, Guerra P, Madeira V, Ruano F, Silva TL, Reis A (2007a) Study of docosahexaenoic acid production by the heterotrophic microalga Crytptehcodnium cohnii CCMP 316 using carob pulp as a promising carbon source. World J Microbiol Biotechnol 23:1209–1215

    CAS  Google Scholar 

  • Mendes A, Silva TL, Reis A (2007b) DHA concentration and purification from the marine heterotrophic microalga Crypthecodnium cohnii CCMP 316 by winterization and urea complexation. Food Technol Biotechnol 45:38–44

    CAS  Google Scholar 

  • Medina A, Giménez A, Camacho F, Pérez J, Grima A, Gómez A (1995) Concentration and purification of stearidonic, eicosapentaenoic, and docosahexaenoic acids from cod liver oil and the marine microalga Isochrysis galbana. J Am Oil Chem Soc 72:575–583

    Google Scholar 

  • Meyer A, Cirpus P, Ott C, Schlecker R, Zahringer U, Heinz E (2003) Biosynthesis of docosahexaenoic acid in Euglena gracillis: Biochemical and molecular evidence for the involvement of a delta 4-fatty acyl group desaturase. Biochemistry 42:9779–9788 doi:10.1021/bi034731y

    PubMed  CAS  Google Scholar 

  • Moreau H, Géraud ML, Bhaud Y, Soyer-Gobillard MO (1998) Cloning, characterization and chromosomal localization of a repeated sequence in Crypthecodinium cohnii, a marine dinoflagellate. Int Microbiol 1:35–43

    PubMed  CAS  Google Scholar 

  • Narayan B, Miyashita K, Hosakawa M (2006) Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) - A review. Food Rev Int 22:291–307 doi:10.1080/87559120600694622

    CAS  Google Scholar 

  • Nerad TA (1993) American type culture collection, catalogue of protists, 18th edn. Rockville, USA

    Google Scholar 

  • Nettleton JA (1992) Are ω-3 fatty acids essential nutrients for fetal and infant development? J Am Diet Assoc 93:58–64 doi:10.1016/0002-8223(93)92132-H

    Google Scholar 

  • Parrow MW, Burkholder JM (2003) Estuarine heterotrophic Cryptoperidiniopsoids (dinophyceae): life cycle and culture studies. J Phycol 39:678–696 doi:10.1046/j.1529-8817.2003.02146.x

    Google Scholar 

  • Parrow MW, Elbrächter M, Krausse MK, Burkholder JM, Deamer NJ, Htyte N et al (2006) The taxonomy and growth of a Crypthecodinium species (Dinophyceae) isolated from a brackish-water fish aquarium. Afr J Mar Sci 28(2):185–192

    Google Scholar 

  • Perret E, Alberta M, Bordes N, Bornens M, Soyer-Gobillard MO (1991) Microtubular spindle and centrosome structures during the cell cycle in a dinoflagellate Crypthecodinium cohnii B - an immunocytochemical study. Biosystems 25:53–65 doi:10.1016/0303-2647(91)90012-A

    PubMed  CAS  Google Scholar 

  • Perret E, Davout J, Albert M, Besseau L, Soyer-Gobillard MO (1993) Microtubule organization during the cell cycle of the primitive eukaryote dinoflagellate Crypthecodinium cohnii. J Cell Sci 104:639–651

    PubMed  Google Scholar 

  • Pringsheim EG (1956) Micro-organisms from decaying seaweed. Nature 178:480–481 doi:10.1038/178480a0

    PubMed  CAS  Google Scholar 

  • Provasoli L, Gold K (1962) Nutrition of American strains of Gyrodinium cohnii. Arch Mikrobiol 42:196 doi:10.1007/BF00408175

    PubMed  CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815 doi:10.1016/j.biochi.2004.09.017

    PubMed  CAS  Google Scholar 

  • Ratledge C (2005) Single Cell Oils for the 21st Century. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Illinois, pp 1–20

    Google Scholar 

  • Ratledge C, Kanagachandran K, Anderson AJ, Grantham DJ, Stephenson JC (2001a) Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids 36:1241–1246 doi:10.1007/s11745-001-0838-x

    PubMed  CAS  Google Scholar 

  • Ratledge C, Anderson AJ, Kanagachandran K, Grantham D, Stephenson JC, de Swaaf M et al (2001b) Culture of Crypthecodinium cohnii for the synthesis of a polyunsaturated fatty acid. WO Patent 2001004338

  • Ratledge C, Anderson AJ, Kanagachandran K (2003) Method of culturing of Crypthecodinium cohnii. GB Patent 103301

  • Raes K, de Smet S, Demeyer D (2004) Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Anim Feed Sci Technol 113:199–221 doi:10.1016/j.anifeedsci.2003.09.001

    CAS  Google Scholar 

  • Ruxton CHS, Calder PC, Reed SC, Simpson MJA (2005) The impact of long-chain ω-3 polyunsaturated fatty acids on human health. Nutr Res Rev 18:113–129 doi:10.1079/NRR200497

    PubMed  CAS  Google Scholar 

  • Saldarriaga JF, Taylor FJR, Cavalier-Smith T, Menden-Deuer S, Keeling PJ (2004) Molecular data and the evolutionary history of dinoflagellates. Eur J Protistol 40:85–111 doi:10.1016/j.ejop.2003.11.003

    Google Scholar 

  • SanGiovanni JP, Berkey CS, Dwyer JT, Colditz GA (2000) Dietary essential fatty acids, long-chain polyunsaturated fatty acids, and visual resolution acuity in healthy fullterm infants: a systematic review. Early Hum Dev 57:165–188 doi:10.1016/S0378-3782(00)00050-5

    PubMed  CAS  Google Scholar 

  • Schiller J (1933) Dinoflagellatae (Peridineae) in monographischer Behandlung. In: Kolkwitz R (ed) Rabenhorst’s Kryptogamenflora 10(3), 2nd edn. Akad Verlag, Leipzig

    Google Scholar 

  • Seligo A (1885) Untersuchungen über Flagellaten. Beitraege Biol Pflanzen 4:145–180

    Google Scholar 

  • Senanayake SP, Shahidi F (2000) Concentration of Docosahexaenoic Acid (DHA) from algal oil via urea complexation. J Food Lipids 7:51–61 doi:10.1111/j.1745-4522.2000.tb00160.x

    CAS  Google Scholar 

  • Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:146–153 doi:10.1007/s00253-003-1525-y

    PubMed  CAS  Google Scholar 

  • Sijtsma L, Springer J, Meesters PA, de Swaaf ME, Enggink G (1998) Recent advances in fatty acid synthesis in oleaginous yeasts and microalgae. Recent Res Dev Microbiol 2:219–232

    CAS  Google Scholar 

  • Sijtsma L, Anderson A, Ratledge C (2005) Alternative carbon sources for heterotrophic production of docosahexaenoic acid by the marine alga Crypthecodinium cohnii. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Illinois, pp 107–123

    Google Scholar 

  • Silva TL, Mendes A, Mendes R, Calado V, Alves SS, Vasconcelos JMT et al (2006) Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA production. J Ind Microbiol Biotechnol 33:408–416 doi:10.1007/s10295-006-0081-8

    PubMed  Google Scholar 

  • Singh A, Ward OP (1996) Production of high yields of docosahexaenoc acid by Thraustochytrium roseau ATCC 28210. J Ind Microbiol Biotechnol 16:370–373

    CAS  Google Scholar 

  • Sonnenborn U, Kunau WH (1982) Purification and properties of the fatty acid synthetase complex from the marine dinoflagellate Crypthecodinium cohnii. Biochim Biophys Acta 712:523–534

    PubMed  CAS  Google Scholar 

  • Sournia A (1986) Atlas du phytoplancton marin. Introduction, Cyanophycées, Dictochophycées, Dinophycées et Raphidophycées (vol. 1). Edition du CNRS, Paris

    Google Scholar 

  • Spector DL (1984) Dinoflagellate. Academic Press, New York

    Google Scholar 

  • Takeuchi D, Uehara K, Lizuka T (1994) Processes for culturing marine microalgae and producing docosahexaenoic acid using the same. EP Patent 0622463

  • Thomas WH, Gibson CH (1990) Effects of small-scale turbulence on microalgae. J Appl Phycol 2:71–77 doi:10.1007/BF02179771

    Google Scholar 

  • Thomas WH, Gibson CH (1992) Effects of quantified small-scale turbulence on the dinoflagellate, Gymnodinium sanguíneum (splendens): contrasts with Gonyaulax (Lingulodinium) polyedra, and the fishery implication. Deep-Sea Res 39:1429–1437 doi:10.1016/0198-0149(92)90078-8

    Google Scholar 

  • Tuttle RC, Loeblich AR, Smith VE (1973) Carotenoids of Crypthecodinium cohnii. J Protozool 20:521–521

    Google Scholar 

  • Tuttle RC, Loeblich AR (1974a) The discovery of genetic recombination in dinoflagellate Crypthecodinium cohnii. J Phycol 10:16S

    Google Scholar 

  • Tuttle RC, Loeblich AR (1974b) Genetic recombination in dinoflagellate Crypthecodinium cohnii. Science 185:1061–1062 doi:10.1126/science.185.4156.1061

    PubMed  CAS  Google Scholar 

  • Tuttle RC, Loeblich AR (1975) An optimal growth medium for the Dinoflagellate Crypthecodinium cohnii. Phycologia 14:1–8

    Google Scholar 

  • Ucko M, Cohen S, Gordin H, Arad S (1989) Relationship between the unicellular red micralga Porphyridium sp. and its predador, the dinoflagellate Gymnodinium sp. Appl Environ Microbiol 53:2990–2884

    Google Scholar 

  • Ucko M, Elbrächter M, Schnepf E (1997) A Crypthecodinium cohnii-like dinoflagellate feeding myzocytotically on the unicellular red alga Porphyridium sp. Eur J Phycol 32:133–140

    Google Scholar 

  • Van Beelen VA, Roeleveld J, Mooibroek H, Sijtsma L, Bino RJ, Bosch D et al (2007) A comparative study on the effect of algal and fish oil on viability and cell proliferation of Caco-2 cells. Food Chem Toxicol 45:716–724 doi:10.1016/j.fct.2006.10.017

    PubMed  Google Scholar 

  • Van Pelt CKV, Huang MC, Tschanz CL, Brenna JT (1999) An octaene fatty acid, 4,7,10,13,16,19,22,25-Octacosaoctaenoic acid (28:8n-3), found in marine oils. J Lipid Res 40:1501–1505

    PubMed  Google Scholar 

  • Vazhappilly R (1999) Effects of environmental factors and desaturase inhibitors on formation of docosahexaenoic acid by Crypthecodinium cohnii strains under heterotrophic growth conditions. Doctoral thesis, University of Hong-Kong

  • Vazhappilly R, Chen F (1998) Eicosapentaenoic acid and docosahexaenoic acid production Potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75:393–397

    CAS  Google Scholar 

  • Withers NW, Tuttle RC, Holz GG, Beach DH, Goad LJ, Goodwin TW (1978) Dehydrodinosterol, dinosterone and related sterols of a non-photosynthetic dinoflagellate, Crypthecodinium cohnii. Phytochemistry 17:1987–1989 doi:10.1016/S0031-9422(00)88748-8

    CAS  Google Scholar 

  • Wong JTY, Whiteley A (1996) An improved method of cell synchronisation for the heterotrophic dinoflagellate Crypthecodinium cohnii Biecheler analysed by flow cytometry. J Exp Mar Biol Ecol 197:91–99 doi:10.1016/0022-0981(95)00146-8

    Google Scholar 

  • Wynn J, Behrens P, Sundararajan A, Hansen J, Apt K (2005) Production of single cell oils by dinoflagellates. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS press, Illinois, pp 86–98

    Google Scholar 

  • Yeung PKK, Wong JTY (2003) Inhibition of cell proliferation by mechanical agitation involves transient cell cycle arrest at G1 phase in dinoflagellates. Protoplasma 220:173–178 doi:10.1007/s00709-002-0039-2

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the following publishers and institutions for permission to use material in this review: The company of Biologists, for the use of Figure 1; The Editor-in-Chief of the Afr. J. Mar. Sci., for the use of Figure 2; Willey-Blackewell Publisher, for the use of Figure 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Lopes da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes, A., Reis, A., Vasconcelos, R. et al. Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21, 199–214 (2009). https://doi.org/10.1007/s10811-008-9351-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-008-9351-3

Keywords

Navigation