Journal of Applied Phycology

, Volume 21, Issue 2, pp 199–214 | Cite as

Crypthecodinium cohnii with emphasis on DHA production: a review

  • Ana Mendes
  • Alberto Reis
  • Rita Vasconcelos
  • Pedro Guerra
  • Teresa Lopes da Silva


Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid (PUFA) that belongs to the ω-3 group. In recent years, DHA has attracted much attention because of its recognized beneficial effect on human health. At present, fish oil is the major source of DHA, but it may be produced by microorganisms with additional benefits. Marine microorganisms may contain large amounts of DHA and are considered a potential source of this important fatty acid. Some of these organisms can be grown heterotrophically on organic substrates without light, offering the possibility of greatly increasing microalgal cell concentration under controlled and monitored conditions, resulting in a very high quality product. Among the heterotrophic marine dinoflagellates, Crypthecodinium cohnii has been identified as a prolific producer of DHA. The organism is extraordinary in that it produces no other PUFAs than DHA in its cell lipid in any significant amount, which makes the DHA purification process very attractive, particularly for pharmaceutical and nutraceutical applications. This paper reviews recent advances in the biotechnological production of DHA by C. cohnii.


Crypthecodinium cohnii Dinoflagellates Docosahexaenoic acid (DHA) Polyunsaturated fatty acids PUFAs 



The authors wish to express their gratitude to the following publishers and institutions for permission to use material in this review: The company of Biologists, for the use of Figure 1; The Editor-in-Chief of the Afr. J. Mar. Sci., for the use of Figure 2; Willey-Blackewell Publisher, for the use of Figure 3.


  1. Beach DH, Holz GG (1973) Environmental influences on the docosahexaenoate content of the triacylglycerols and phosphatidylcholine of a heterotrophic, marine dinoflagellate, Crypthecodinium cohnii. Biochim Biophys Acta 316:56–65PubMedGoogle Scholar
  2. Beach DH, Harrington GW, Gellerman JL, Schlenk H, Holz GG (1974) Biosynthesis of oleic acid and docosahexaenoic acid by a heterotrophic marine dinoflagellate Crypthecodinium cohnii. Biochim Biophys Acta 369:16–24PubMedGoogle Scholar
  3. Beam CA, Himes M (1974) Evidence for sexual fusion and recombination in the dinoflagellate Crypthecodinium (Gyrodinium) cohni. Nature 250:435–436 doi: 10.1038/250435a0 PubMedGoogle Scholar
  4. Beam CA, Himes M (1977) Sexual isolation and genetic diversification among some strains of Crypthecodinium cohnii–like dinoflagellates. Evidence of speciation. J Protozool 24:532–539Google Scholar
  5. Beam CA, Himes M (1980) Utilization of carbon sources by different strains of Crpthecodinium cohnii Seligo. J Protozool 27:A37Google Scholar
  6. Beam CA, Himes M (1982) Distribution of members of the Crypthecodinium cohnii (Dinophyceae) species complex. J Protozool 29:8–15Google Scholar
  7. Beam CA, Himes M (1987) Electrophoretic characterization of members of the Crypthecodinium cohnii (Dinophyceae) species complex. J Protozool 34:204–217Google Scholar
  8. Beam CA, Himes M, Himelfarb J, Link C, Shaw K (1977) Genetic evidence of unusual meiosis in dinoflagellate Crypthecodinium cohnii. Genetics 87:19–32PubMedGoogle Scholar
  9. Beam CA, Preparata RM, Himes M, Nanney DL (1993) Ribosomal RNA sequencing of members of the Crypthecodinium cohnii (Dinophyceae) species complex; comparison with soluble enzyme studies. J Eukaryot Microbiol 40:660–667 doi: 10.1111/j.1550-7408.1993.tb06124.x PubMedGoogle Scholar
  10. Berdalet E (1992) Effects of turbulence on the marine dinoflagellate Gymnodinium nelsonii. J Phycol 28:267–272 doi: 10.1111/j.0022-3646.1992.00267.x Google Scholar
  11. Berdalet E, Estrada M (1993) Effects of turbulence on several dinoflagellate species. Dev Mar Biol 3:737–740Google Scholar
  12. Behrens PW, Thompson JM, Apt K, Pfeifer JW, Wynn JP, Lippmeier JC et al (2005) Production of high levels of DHA in microalgae using modified amounts of chloride and potassium. WO Patent 035775 A1Google Scholar
  13. Bhaud Y, Soyer-Gobillard MO, Salmon JM (1988) Transmission of gametic nuclei through a fertilization tube during mating in a primitive dinoflagellate. Prorocentrum micans Ehr. J Cell Sci 89:197–206Google Scholar
  14. Bhaud Y, Salmon JM, Soyer-Gobillard MO (1991) The complex cell cycle of the dinoflagellate protoctist Crypthecodinium cohnii as studied in vivo and by cytofluorimetry. J Cell Sci 100:675–682Google Scholar
  15. Bhaud Y, Barbier M, Soyer-Gobillard MO (1994) A detailed study of complexe cell cycle of the dinoflagellate Crypthecodinium cohnii Biecheler and evidence for variation in histone H1 kinase activity. J Eukaryot Microbiol 41:519–526 doi: 10.1111/j.1550-7408.1994.tb06052.x Google Scholar
  16. Bhaud Y, Guillebault D, Lennon JF, Defacque H, Soyer-Gobillard MO, Moreau H (2000) Morphology and behaviour of dinoflagellates chromosomes during the cell cycle and mitosis. J Cell Sci 113:1231–1239PubMedGoogle Scholar
  17. Biecheler B (1952) Recherches sur les Péridiniens. Bull Biol Fr Belg 36:S1–S149Google Scholar
  18. Bourre JM (2005) Where to find ω-3 fatty acids and how feeding animals with diet enriched in ω-3 fatty acids to increase nutritional value of derived products for human: What is actually useful? J Nutr Health Aging 9:232–242PubMedGoogle Scholar
  19. Borowitzka MA (1995) Patents. J Appl Phycol 7(5):509–520 doi: 10.1007/BF00003937 Google Scholar
  20. Boswell K, Koskelo EK, Carl L, Glaza S, Hensen DJ, Williams KD et al (1996) Preclinical evaluation of single cell oils that are highly enriched with arachidonic acid. Food Chem Toxicol 34:585–593 doi: 10.1016/0278-6915(96)00019-1 PubMedGoogle Scholar
  21. Carroll KK (1986) Experimetal studies on dietary fat and cancer in relation to epidemiological data. In: Ip C, Birt DF, Rogers AE, Mettlin C (eds) Dietary fat and cancer - progress in chemical and biological research. Alan RL, New York, pp 231–248Google Scholar
  22. Calado R, Vitorino A, Reis A, Silva TL, Dinis MT (in press) Effect of different diets on larval production, quality and fatty acid profile of the marine ornamental shrimp Lysmata amboinensis (De Man, 1888). Aquacult NutrGoogle Scholar
  23. Carlson SE, Wilson WW (1994) Docosahexaenoic Acid (DHA) supplementation of preterm (Pt) infants - effect on the 12-month bayley mental developmental index (MDI). Pediatr Res 35:A20Google Scholar
  24. Chatton E (1952) Classe des Diniflagellates ou Péridiniens. In: Grassé PP (ed) Traité de Zoologie, vol 1, part 1. Masson, Paris, pp 309–406Google Scholar
  25. Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209 doi: 10.1007/BF00003578 Google Scholar
  26. Christensen JH, Skou HA, Madsen T, Torring I, Schmidt EB (2001) Heart rate variability and ω-3 polyunsaturated fatty acids in patients with diabetes mellitus. J Intern Med 249:545–552 doi: 10.1046/j.1365-2796.2001.00841.x PubMedGoogle Scholar
  27. Connor WE (2000) Importance of ω-3 fatty acids in health and disease. Am J Clin Nutr 71(Suppl.):171S–175SPubMedGoogle Scholar
  28. Crawford MA (1993) The role of essential fatty acids in neural development: implications for perinatal nutrition. Am J Clin Nutr 57(Suppl.):703S–710SPubMedGoogle Scholar
  29. Crawford MA, Costeloe K, Ghebremeskel K, Phlactos A, Skirvin L, Stacey F (1997) Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of pre-term babies? Am J Clin Nutr 66:1032S–1041SPubMedGoogle Scholar
  30. Criggal JG, Trivedi NB, Hutton JR (2002) Pet foods using algal or fungal waste containing fatty acids. US Patent 6338866Google Scholar
  31. Das UN, Fams MD (2003) Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory. Nutrition 19:62–65 doi: 10.1016/S0899-9007(02)00852-3 PubMedGoogle Scholar
  32. de Swaaf ME (2003) Docosahexaenoic acid production by the marine alga Crypthecodinium cohnii. Doctoral thesis, Delft University, Delft University Press, The NederlandsGoogle Scholar
  33. de Swaaf ME, Rijk TC, Eggink G, Sijtsma L (1999) Optimization of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. J Biotechnol 70:185–192 doi: 10.1016/S0168-1656(99)00071-1 Google Scholar
  34. de Swaaf ME, Grobben GJ, Eggink G, Rijk TC, Meer P, Sijtsma L (2001) Characterisation of extracellular polysaccharides produced by Crypthecodinium cohnii. Appl Microbiol Biotechnol 57:395–400 doi: 10.1007/s002530100788 PubMedGoogle Scholar
  35. de Swaaf ME, de Rijk TC, van der Meer P, Eggink G, Sijtsma L (2003a) Analysis of docosahexaenoic acid biosynthesis in Crypthecodinium cohnii by 13C labelling and desaturase inhibitor experiments. J Biotechnol 103:21–29 doi: 10.1016/S0168-1656(03)00070-1 PubMedGoogle Scholar
  36. de Swaaf ME, Pronk JT, Sijtsma L (2003b) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61:40–43PubMedGoogle Scholar
  37. de Swaaf ME, Sijtsma L, Pronk JT (2003c) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672 doi: 10.1002/bit.10513 PubMedGoogle Scholar
  38. Edwards RH, Peet M (1999) Essential fatty acid intake in relation to depression. In: Peet M, Glennm I, Horrobin DF (eds) Phospholipid spectrum disorder in psychiatry. Marius Press, Lancashire, p 211Google Scholar
  39. Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL (1993) A classification of fossil and living dinoflagellates. Micropaleontology Press Spec Pap 7:1–351Google Scholar
  40. Gold K, Baren CF (1966) Growth requirements of Gyrondinium cohnii. J Protozool 13:255–257Google Scholar
  41. Grima EM, Perez JAS, Camacho FG, Sánchez JL, Alonso DL (1993) ω-3 PUFA productivity in chemostat cultures of microalgae. Appl Microbiol Biotechnol 38:599–605 doi: 10.1007/BF00182796 Google Scholar
  42. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91(10):1523–1534 doi: 10.3732/ajb.91.10.1523 Google Scholar
  43. Harel M, Koven W, Lein I, Bar Y, Behrens P, Stubblefield J et al (2002) Advanced DHA, EPA and ArA enrichment materials for marine aqualculture using single cell heterotrophs. Aquaculture 213:347–362 doi: 10.1016/S0044-8486(02)00047-9 Google Scholar
  44. Harrington GW, Holz GG (1968) The monoenoic docosahexaenoic fatty acids of a heterotrophic dinoflagellate. Biochim Biophys Acta 164:137–139PubMedGoogle Scholar
  45. Henderson RJ, Mackinlay EE (1991) Polyunsaturated fatty acid metabolism in the marine dinoflagellate Crypthecodinium cohnii. Phytochemistry 30(6):1781–1787 doi: 10.1016/0031-9422(91)85012-O Google Scholar
  46. Henderson RJ, Leftley JW, Sargent JR (1988) Lipid composition and biosynthesis in the marine dinoflagellate Crypthecodinium cohnii. Phytochemistry 27:1679–1683 doi: 10.1016/0031-9422(88)80425-4 Google Scholar
  47. Hejazi MA, Wijffels RH (2004) Milking of microalgae. Trends Biotechnol 22:189–194 doi: 10.1016/j.tibtech.2004.02.009 PubMedGoogle Scholar
  48. Hibbeln JR, Salem JN (1995) Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nutr 62:1–9PubMedGoogle Scholar
  49. Himes M, Beam CA (1975) Genetic analysis in dinoflagellate Crypthecodinium (Gyrodinium) cohnii: evidence for unusual meiosis. Proc Natl Acad Sci USA 72:4546–4549 doi: 10.1073/pnas.72.11.4546 PubMedGoogle Scholar
  50. Himes M, Beam CA (1978) Further studies of breeding restrictions among Crypthecodnium cohnii-like dinoflagellates. Evidence of a new interbreeding group. J Protozool 25:378–380Google Scholar
  51. Holz GG, Beach DH (1980) Lipids of Crypthecodinium cohnii. J Protozool 27:A37–A37Google Scholar
  52. Ishida Y (1968) Physiological studies on evolution of dimethyl sulphide from unicellular marine alga. Meml Res Inst Sci Kyoto Univ 94:48–82Google Scholar
  53. Jiang Y, Chen F (1999) Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii. J Ind Microbiol Biotechnol 23:508–513 doi: 10.1038/sj.jim.2900759 Google Scholar
  54. Jiang Y, Chen F (2000a) Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochem 35:1205–1209 doi: 10.1016/S0032-9592(00)00163-1 Google Scholar
  55. Jiang Y, Chen F (2000b) Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. J Am Chem Soc 77:613–617 doi: 10.1007/s11746-000-0099-0 Google Scholar
  56. Jiang Y, Chen F, Liang SZ (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem 34:633–637 doi: 10.1016/S0032-9592(98)00134-4 Google Scholar
  57. Joordens JCA, Kuipers RS, Muskiet FAJ (2007) Preformed dietary DHA: The answer to a scientific question may in practice become translated to its opposite. Am J Hum Biol 19:582–584 doi: 10.1002/ajhb.20675 PubMedGoogle Scholar
  58. Kofoid CA, Swezy O (1921) The free living unamored Dinoflagellata. Mem Universiry Calif 5:1–562Google Scholar
  59. Kubai DF, Ris H (1969) Division in the dinoflagellate Gyrodinium cohnii (Schiller). A new type of nuclear reproduction. J Cell Biol 40:508–528 doi: 10.1083/jcb.40.2.508 PubMedGoogle Scholar
  60. Kyle DJ (1996) Production and use of a single cell oil which is highly enriched in docosahexaenoic acid. Lipid Technol 8:107–110Google Scholar
  61. Kyle DJ (2004) Use of docosahexaenoic acid for the manufacture of a medicament for the treatment of senile dementia and Alzheimer’s disease. Martek Bioscience Corporation. E Patent 1419780 A1Google Scholar
  62. Kyle DJ, Reeb SE, Sicotte VJ (1991) Docosahexaenoic acid, methods for its production and compounds containing the same. Martek Corporation, WO Patent 9111918Google Scholar
  63. Kyle DJ, Reeb SE, Sicotte VJ (1995) Production of Docosahexaenoic acid by dinoflagellates. Martek Corporation, Martek Corportarion, US Patent 5407957Google Scholar
  64. Kyle DJ, Reeb SE, Sicotte VJ (1998) Dinoflagellate biomass, methods for its production, and compositions containing the same. Martek Bioscience Corporation, US Patent 5711983Google Scholar
  65. Kwok ACM, Wong JTY (2003) Cellulose synthesis is coupled to cell cycle progression at G1 in the dinoflagellate Crypthecodinium cohnii. Plant Physiol 131:1681–1691 doi: 10.1104/pp.102.018945 PubMedGoogle Scholar
  66. Kwok ACM, Wong JTY (2005) Lipid biosynthesis and its coordination with cell cycle progression. Plant Cell Physiol 46(12):1973–1986 doi: 10.1093/pcp/pci213 PubMedGoogle Scholar
  67. Li D, Bode O, Drummond H, Sinclair AJ (2003) ω-3 fatty acids. In: Gunstone FD (ed) Lipids for functional foods and nutraceuticals. The Oily Press, New York, pp 225–262Google Scholar
  68. Liu G, Bibus DM, Bode AM, Ma WY, Holman RT, Dong Z (2001) ω-3 but not polyunsaturated fat content of canned meats commonly available in Australia. Food Aust 54:311–315Google Scholar
  69. Loeblich AR (1976) Dinoflagellate evolution: speculation and evidence. J Protozool 23:13–28PubMedGoogle Scholar
  70. Mendes A, Guerra P, Madeira V, Ruano F, Silva TL, Reis A (2007a) Study of docosahexaenoic acid production by the heterotrophic microalga Crytptehcodnium cohnii CCMP 316 using carob pulp as a promising carbon source. World J Microbiol Biotechnol 23:1209–1215Google Scholar
  71. Mendes A, Silva TL, Reis A (2007b) DHA concentration and purification from the marine heterotrophic microalga Crypthecodnium cohnii CCMP 316 by winterization and urea complexation. Food Technol Biotechnol 45:38–44Google Scholar
  72. Medina A, Giménez A, Camacho F, Pérez J, Grima A, Gómez A (1995) Concentration and purification of stearidonic, eicosapentaenoic, and docosahexaenoic acids from cod liver oil and the marine microalga Isochrysis galbana. J Am Oil Chem Soc 72:575–583Google Scholar
  73. Meyer A, Cirpus P, Ott C, Schlecker R, Zahringer U, Heinz E (2003) Biosynthesis of docosahexaenoic acid in Euglena gracillis: Biochemical and molecular evidence for the involvement of a delta 4-fatty acyl group desaturase. Biochemistry 42:9779–9788 doi: 10.1021/bi034731y PubMedGoogle Scholar
  74. Moreau H, Géraud ML, Bhaud Y, Soyer-Gobillard MO (1998) Cloning, characterization and chromosomal localization of a repeated sequence in Crypthecodinium cohnii, a marine dinoflagellate. Int Microbiol 1:35–43PubMedGoogle Scholar
  75. Narayan B, Miyashita K, Hosakawa M (2006) Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) - A review. Food Rev Int 22:291–307 doi: 10.1080/87559120600694622 Google Scholar
  76. Nerad TA (1993) American type culture collection, catalogue of protists, 18th edn. Rockville, USAGoogle Scholar
  77. Nettleton JA (1992) Are ω-3 fatty acids essential nutrients for fetal and infant development? J Am Diet Assoc 93:58–64 doi: 10.1016/0002-8223(93)92132-H Google Scholar
  78. Parrow MW, Burkholder JM (2003) Estuarine heterotrophic Cryptoperidiniopsoids (dinophyceae): life cycle and culture studies. J Phycol 39:678–696 doi: 10.1046/j.1529-8817.2003.02146.x Google Scholar
  79. Parrow MW, Elbrächter M, Krausse MK, Burkholder JM, Deamer NJ, Htyte N et al (2006) The taxonomy and growth of a Crypthecodinium species (Dinophyceae) isolated from a brackish-water fish aquarium. Afr J Mar Sci 28(2):185–192Google Scholar
  80. Perret E, Alberta M, Bordes N, Bornens M, Soyer-Gobillard MO (1991) Microtubular spindle and centrosome structures during the cell cycle in a dinoflagellate Crypthecodinium cohnii B - an immunocytochemical study. Biosystems 25:53–65 doi: 10.1016/0303-2647(91)90012-A PubMedGoogle Scholar
  81. Perret E, Davout J, Albert M, Besseau L, Soyer-Gobillard MO (1993) Microtubule organization during the cell cycle of the primitive eukaryote dinoflagellate Crypthecodinium cohnii. J Cell Sci 104:639–651PubMedGoogle Scholar
  82. Pringsheim EG (1956) Micro-organisms from decaying seaweed. Nature 178:480–481 doi: 10.1038/178480a0 PubMedGoogle Scholar
  83. Provasoli L, Gold K (1962) Nutrition of American strains of Gyrodinium cohnii. Arch Mikrobiol 42:196 doi: 10.1007/BF00408175 PubMedGoogle Scholar
  84. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815 doi: 10.1016/j.biochi.2004.09.017 PubMedGoogle Scholar
  85. Ratledge C (2005) Single Cell Oils for the 21st Century. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Illinois, pp 1–20Google Scholar
  86. Ratledge C, Kanagachandran K, Anderson AJ, Grantham DJ, Stephenson JC (2001a) Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids 36:1241–1246 doi: 10.1007/s11745-001-0838-x PubMedGoogle Scholar
  87. Ratledge C, Anderson AJ, Kanagachandran K, Grantham D, Stephenson JC, de Swaaf M et al (2001b) Culture of Crypthecodinium cohnii for the synthesis of a polyunsaturated fatty acid. WO Patent 2001004338Google Scholar
  88. Ratledge C, Anderson AJ, Kanagachandran K (2003) Method of culturing of Crypthecodinium cohnii. GB Patent 103301Google Scholar
  89. Raes K, de Smet S, Demeyer D (2004) Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Anim Feed Sci Technol 113:199–221 doi: 10.1016/j.anifeedsci.2003.09.001 Google Scholar
  90. Ruxton CHS, Calder PC, Reed SC, Simpson MJA (2005) The impact of long-chain ω-3 polyunsaturated fatty acids on human health. Nutr Res Rev 18:113–129 doi: 10.1079/NRR200497 PubMedGoogle Scholar
  91. Saldarriaga JF, Taylor FJR, Cavalier-Smith T, Menden-Deuer S, Keeling PJ (2004) Molecular data and the evolutionary history of dinoflagellates. Eur J Protistol 40:85–111 doi: 10.1016/j.ejop.2003.11.003 Google Scholar
  92. SanGiovanni JP, Berkey CS, Dwyer JT, Colditz GA (2000) Dietary essential fatty acids, long-chain polyunsaturated fatty acids, and visual resolution acuity in healthy fullterm infants: a systematic review. Early Hum Dev 57:165–188 doi: 10.1016/S0378-3782(00)00050-5 PubMedGoogle Scholar
  93. Schiller J (1933) Dinoflagellatae (Peridineae) in monographischer Behandlung. In: Kolkwitz R (ed) Rabenhorst’s Kryptogamenflora 10(3), 2nd edn. Akad Verlag, LeipzigGoogle Scholar
  94. Seligo A (1885) Untersuchungen über Flagellaten. Beitraege Biol Pflanzen 4:145–180Google Scholar
  95. Senanayake SP, Shahidi F (2000) Concentration of Docosahexaenoic Acid (DHA) from algal oil via urea complexation. J Food Lipids 7:51–61 doi: 10.1111/j.1745-4522.2000.tb00160.x Google Scholar
  96. Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:146–153 doi: 10.1007/s00253-003-1525-y PubMedGoogle Scholar
  97. Sijtsma L, Springer J, Meesters PA, de Swaaf ME, Enggink G (1998) Recent advances in fatty acid synthesis in oleaginous yeasts and microalgae. Recent Res Dev Microbiol 2:219–232Google Scholar
  98. Sijtsma L, Anderson A, Ratledge C (2005) Alternative carbon sources for heterotrophic production of docosahexaenoic acid by the marine alga Crypthecodinium cohnii. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Illinois, pp 107–123Google Scholar
  99. Silva TL, Mendes A, Mendes R, Calado V, Alves SS, Vasconcelos JMT et al (2006) Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA production. J Ind Microbiol Biotechnol 33:408–416 doi: 10.1007/s10295-006-0081-8 PubMedGoogle Scholar
  100. Singh A, Ward OP (1996) Production of high yields of docosahexaenoc acid by Thraustochytrium roseau ATCC 28210. J Ind Microbiol Biotechnol 16:370–373Google Scholar
  101. Sonnenborn U, Kunau WH (1982) Purification and properties of the fatty acid synthetase complex from the marine dinoflagellate Crypthecodinium cohnii. Biochim Biophys Acta 712:523–534PubMedGoogle Scholar
  102. Sournia A (1986) Atlas du phytoplancton marin. Introduction, Cyanophycées, Dictochophycées, Dinophycées et Raphidophycées (vol. 1). Edition du CNRS, ParisGoogle Scholar
  103. Spector DL (1984) Dinoflagellate. Academic Press, New YorkGoogle Scholar
  104. Takeuchi D, Uehara K, Lizuka T (1994) Processes for culturing marine microalgae and producing docosahexaenoic acid using the same. EP Patent 0622463Google Scholar
  105. Thomas WH, Gibson CH (1990) Effects of small-scale turbulence on microalgae. J Appl Phycol 2:71–77 doi: 10.1007/BF02179771 Google Scholar
  106. Thomas WH, Gibson CH (1992) Effects of quantified small-scale turbulence on the dinoflagellate, Gymnodinium sanguíneum (splendens): contrasts with Gonyaulax (Lingulodinium) polyedra, and the fishery implication. Deep-Sea Res 39:1429–1437 doi: 10.1016/0198-0149(92)90078-8 Google Scholar
  107. Tuttle RC, Loeblich AR, Smith VE (1973) Carotenoids of Crypthecodinium cohnii. J Protozool 20:521–521Google Scholar
  108. Tuttle RC, Loeblich AR (1974a) The discovery of genetic recombination in dinoflagellate Crypthecodinium cohnii. J Phycol 10:16SGoogle Scholar
  109. Tuttle RC, Loeblich AR (1974b) Genetic recombination in dinoflagellate Crypthecodinium cohnii. Science 185:1061–1062 doi: 10.1126/science.185.4156.1061 PubMedGoogle Scholar
  110. Tuttle RC, Loeblich AR (1975) An optimal growth medium for the Dinoflagellate Crypthecodinium cohnii. Phycologia 14:1–8Google Scholar
  111. Ucko M, Cohen S, Gordin H, Arad S (1989) Relationship between the unicellular red micralga Porphyridium sp. and its predador, the dinoflagellate Gymnodinium sp. Appl Environ Microbiol 53:2990–2884Google Scholar
  112. Ucko M, Elbrächter M, Schnepf E (1997) A Crypthecodinium cohnii-like dinoflagellate feeding myzocytotically on the unicellular red alga Porphyridium sp. Eur J Phycol 32:133–140Google Scholar
  113. Van Beelen VA, Roeleveld J, Mooibroek H, Sijtsma L, Bino RJ, Bosch D et al (2007) A comparative study on the effect of algal and fish oil on viability and cell proliferation of Caco-2 cells. Food Chem Toxicol 45:716–724 doi: 10.1016/j.fct.2006.10.017 PubMedGoogle Scholar
  114. Van Pelt CKV, Huang MC, Tschanz CL, Brenna JT (1999) An octaene fatty acid, 4,7,10,13,16,19,22,25-Octacosaoctaenoic acid (28:8n-3), found in marine oils. J Lipid Res 40:1501–1505PubMedGoogle Scholar
  115. Vazhappilly R (1999) Effects of environmental factors and desaturase inhibitors on formation of docosahexaenoic acid by Crypthecodinium cohnii strains under heterotrophic growth conditions. Doctoral thesis, University of Hong-KongGoogle Scholar
  116. Vazhappilly R, Chen F (1998) Eicosapentaenoic acid and docosahexaenoic acid production Potential of microalgae and their heterotrophic growth. J Am Oil Chem Soc 75:393–397Google Scholar
  117. Withers NW, Tuttle RC, Holz GG, Beach DH, Goad LJ, Goodwin TW (1978) Dehydrodinosterol, dinosterone and related sterols of a non-photosynthetic dinoflagellate, Crypthecodinium cohnii. Phytochemistry 17:1987–1989 doi: 10.1016/S0031-9422(00)88748-8 Google Scholar
  118. Wong JTY, Whiteley A (1996) An improved method of cell synchronisation for the heterotrophic dinoflagellate Crypthecodinium cohnii Biecheler analysed by flow cytometry. J Exp Mar Biol Ecol 197:91–99 doi: 10.1016/0022-0981(95)00146-8 Google Scholar
  119. Wynn J, Behrens P, Sundararajan A, Hansen J, Apt K (2005) Production of single cell oils by dinoflagellates. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS press, Illinois, pp 86–98Google Scholar
  120. Yeung PKK, Wong JTY (2003) Inhibition of cell proliferation by mechanical agitation involves transient cell cycle arrest at G1 phase in dinoflagellates. Protoplasma 220:173–178 doi: 10.1007/s00709-002-0039-2 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ana Mendes
    • 1
  • Alberto Reis
    • 1
  • Rita Vasconcelos
    • 1
  • Pedro Guerra
    • 1
  • Teresa Lopes da Silva
    • 1
  1. 1.Instituto Nacional de Engenharia, Tecnologia e Inovação (INETI), Departamento de BiotecnologiaUnidade de Bioengenharia e BioprocessosLisboaPortugal

Personalised recommendations