Skip to main content
Log in

Cloning and characterization of a Rab11 homologue in Gracilariopsis lemaneiformis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A small GTPase-encoding gene, homologous to Rab11s from animals, was cloned from the red alga Gracilariopsis lemaneiformis. The gene was isolated from libraries generated by suppression subtractive hybridization between female gametophytes and tetrasporophytes, designated as GlRab11, and found to be phase-relative, upregulated in female gametophytes. Two transcripts of GlRab11 were obtained by RACE (rapid amplification of cDNA ends). One was a mature mRNA and the other was an intermediate formed during mRNA processing. The former had 737 nucleotides with an open reading frame of 648 nucleotides encoding 214 amino acid residues, 83 nucleotides of 5′-UTR (untranslated-region) and 12 nucleotides of 3′-UTR. The amino acid sequence analysis of GlRab11 showed that it contained a Rab domain and a double cysteine motif in the C terminus. Southern blot analysis revealed that GlRab11 was probably a single copy gene. Two recombinant GlRab11 proteins were able to bind GTP in vitro. The identification of proteins involved in the phase development of G. lemaneiformis might shed some light on the still obscure molecular events during phase formation in red algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alone DP, Tiwari AK, Mandal L, Li MF, Mechler BM, Roy JK (2005) Rab11 is required during Drosophila eye development. Int J Dev Biol 49:873–879

    Article  PubMed  CAS  Google Scholar 

  • Bill RM, Winter PC, McHale CM, Hodges VM, Elder GE, Caley J, Flitsch SL, Bicknell R, Lappin TRJ (1995) Expression and mutagenesis of recombinant human and murine erythropoietins in Escherichia coli. Biochim Biophys Acta 1261:35–43

    PubMed  Google Scholar 

  • Chavrier P, Goud B (1999) The role of Arf and Rab GTPase in membrane transport. Curr Opin Cell Biol 11:466–475

    Article  PubMed  CAS  Google Scholar 

  • Cho G, Doolittle RF (1997) Intron distribution in ancient paralogs supports random insertion and not random loss. J Mol Evol 44:573–584

    Article  PubMed  CAS  Google Scholar 

  • Corbett KD, Alber T (2001) The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem Sci 26:710–716

    Article  PubMed  CAS  Google Scholar 

  • Fowler JE, Vejlupkova Z, Goodner BW, Lu G, Quatrano RS (2004) Localization to therhizoid tip implicates a Fucus distichus Rho family GTPase in a conserved cell polarity pathway. Planta 219:856–866

    Article  PubMed  CAS  Google Scholar 

  • Guzman-Uriostegui A, Garcia-Jimenez P, Marian F, Robledo D, Robaina R (2002) Polyamines influence maturation in reproductive structures of Gracilaria cornea (Gracilariales, Rhodophyta). J Phycol 38:1169–1175

    Article  CAS  Google Scholar 

  • Hall A (1990) The cellular functions of small GTP-binding proreins. Science 249:634–640

    Article  Google Scholar 

  • Kahn RA, Der CJ, Bokoch GM (1992) The Ras superfamily of GTP-binding proteins: guidelines on nomenclature. FASEB J 6:2512–2513

    PubMed  CAS  Google Scholar 

  • Kain JM, Destombe C (1995) A review of the life history, reproduction and phenology of Gracilaria. J Appl Phycol 7:269–281

    Article  Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Article  Google Scholar 

  • Khotimchenko SV (2006) Variations in lipid composition among different developmental stages of Gracilaria verrucosa (Rhodophyta). Bot Mar 49:34–38

    Article  CAS  Google Scholar 

  • Laura T (2002) Fine structure and X-ray microanalysis of a red macrophyte cultured under cadmium stress. Environ Pollut 120:813–821

    Google Scholar 

  • Lazar T, Gotte M, Gallwitz D (1997) Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell? Trends Biochem Sci 22:468–472

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Carpenter EJ (1999) A psttlre-form of cdc2-like gene in the marine microalga Dunaliella tertiolecta. Gene 239:39–48

    Article  PubMed  CAS  Google Scholar 

  • Liu QY, van der Meer JP, Reith ME (1994) Isolation and characterization of phase-specific complementary DNAs from sporophytes and gametophytes of Porphyra purpurea (Rhodophyta) using subtracted complementary DNA libraries. J Phycol 30:513–520

    Article  CAS  Google Scholar 

  • Louro R, Nakaya HI, Paquola ACM, Martins EAL, da Silva AM, Verjovski-Almeida S, Reis EM (2004) RASL11A, member of a novel small monomeric GTPase gene family, is down regulated in prostate tumors. Biochem Biophys Res Commun 316:618–627

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Zainal Z, Tucker GA, Lycett GW (2001) Developmental abnormalities and reduced fruit softening in tomato plants expressing an antisense Rab11 GTPase gene. Plant Cell 13:1819–1833

    Article  PubMed  CAS  Google Scholar 

  • Nagano Y, Murai N, Matsuno R, Sasaki Y (1993) Isolation and characterization of cDNAs that encode eleven small GTP-binding proteins from Pisum sativum. Plant Cell Physiol 34:447–455

    PubMed  CAS  Google Scholar 

  • Novick P, Zerial M (1997) The diversity of RAB proteins in vesicle transport. Curr Opin Cell Biol 9:496–504

    Article  PubMed  CAS  Google Scholar 

  • Nozaki H (2005) A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the Plantae, emended. J Plant Res 118:247–255

    Article  PubMed  Google Scholar 

  • Olkkonen VM, Stenmark H (1997) Role of Rab GTPases in membrane traffic. Int Rev Cytol 176:1–85

    Article  PubMed  CAS  Google Scholar 

  • Palena CM, Gonzalez DH, Guelman SA, Chan RL (1998) Expression of sunflower homeodomain containing proteins in Escherichia coli: purification and functional studies. Protein Expr Purif 13:91–103

    Article  Google Scholar 

  • Pereira-Leal JB, Seabra MC (2000) The mammallian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol 301:1077–1087

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313:889–901

    Article  PubMed  CAS  Google Scholar 

  • Piao WH, Song XG, Liu MC, He Y, Zhang HH, Xu WX, Li ZL, Zhang HQ, Ling SG, Wang GQ (2004) Cloning, expression, and purification of HLA-A2-BSP and b-2 m in Escherichia coli. Protein Expr Purif 35:210–217

    Article  PubMed  CAS  Google Scholar 

  • Ramos FP, Araripe JR, Urmenyi TP, Silva R, Silva NLCE, Fontes CFL, da Silveira JF, Rondinelli E (2005) Characterization of RAB-like4, the first identified RAB-like protein from Trypanosoma cruzi with GTPase activity. Biochem Biophys Res Commun 333:808–817

    Article  PubMed  CAS  Google Scholar 

  • Rao PV, Zigler JS Jr, Garland D (1997) Analysis of small GTP-binding proteins of the lens by GTP overlay assay reveals the presence of unique GTP-binding proteins associated with fiber cells. Exp Eye Res 64:219–227

    Article  PubMed  CAS  Google Scholar 

  • Ren XY, Zhang XC, Sui ZH (2006) Identification of phase-related genes in tetrasporophytes and female gametophytes of Gracilaria lemaneiformis. Electron J Biotechnol 9:127–132

    Article  CAS  Google Scholar 

  • Schimmöller F, Simon I, Pfeffer SR (1998) Rab GTPases, directors of vesicle docking. J Biol Chem 273:22161–22164

    Article  PubMed  Google Scholar 

  • Schlegel M (2003) Phylogeny of Eukaryotes recovered with molecular data: highlights and pitfalls the “crown” group, including red algae, chlorobionts (green algae, mosses, and vascular plants), fungi, metazoans, and choanoflagellates. Eur J Protistol 39:113–122

    Article  Google Scholar 

  • Seabra MC, Goldstein JL, Südhof TC, Brown MS (1992) Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J Biol Chem 267:14497–14503

    PubMed  CAS  Google Scholar 

  • Segev N (2001) Ypt and Rab GTPases: insight into functions through novel interactions. Curr Opin Cell Biol 13:500–511

    Article  PubMed  CAS  Google Scholar 

  • Swiderski CE, Klei TR, Horohov DW (1999) Quantitative measurement of equine cytokine mRNA expression by polymerase chain reaction using target-specific standard curves. J Immunol Methods 222:155–169

    Article  PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Res 81:153–208

    CAS  Google Scholar 

  • Utech M, Höbbel G, Rust S, Reinecke H, Assmann G, Walter M (2001) Accumulation of RhoA, RhoB, RhoG, and Rac1 in fibroblasts from Tangier disease subjects suggests a regulatory role of Rho family proteins in cholesterol efflux. Biochem Biophys Res Commun 280:229–236

    Article  PubMed  CAS  Google Scholar 

  • Zhang XC, van der Meer JP (1988) A genetic study on Gracilaria sjoestedtii. Can J Bot 66:2022–2026

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Scientific Foundations of China (Nos. 30170736, 30671603 and 40606034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuecheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, X., Zhang, X., Mao, Y. et al. Cloning and characterization of a Rab11 homologue in Gracilariopsis lemaneiformis . J Appl Phycol 20, 1103–1109 (2008). https://doi.org/10.1007/s10811-008-9322-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-008-9322-8

Keywords

Navigation