Journal of Applied Phycology

, Volume 19, Issue 5, pp 567–590 | Cite as

The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species

Article

Abstract

The taxonomy of the green algal genus Dunaliella is often seen as confusing and the names associated with species in culture collections are sometimes suspect. This paper evaluates and reviews the current taxonomy based on morphological and biochemical characters of this genus. The life history of Dunaliella is also presented. The variability, stability and usefulness of the main characters used to characterise the taxa are evaluated, based both on the literature and on a detailed examination of the Dunaliella strains in the Murdoch University Microalgae Culture Collection. A detailed updated description and key to the 22 species and a number of varieties and forms of the marine and halophilic species of Dunaliella currently recognised is given to allow researchers to identify their strains.

Keywords

Chlorophyta Dunaliella Taxonomy Systematics 

References

  1. Agapow P-M, Bininda-Edmonds ORP, Crandall KA, Gittleman JL, Mace GM, Marshall JC, Purvis A (2004) The impact of species concept on biodiversity studies. Quart Rev Biol 79:161–179PubMedGoogle Scholar
  2. Artari A (1914) Zur Physiologie der Chloromonaden. II. Einige neue Versuche und Beobachtungen. Jb Wiss Bot 53:527–530Google Scholar
  3. Atkins WRG, Parke M (1951) Seasonal changes in the phytoplankton as indicated by chlorophyll estimations. J Mar Biol Ass UK 29:609–618Google Scholar
  4. Avron M, Ben-Amotz A (1992) Dunaliella: Physiology, biochemistry and biotechnology. CRC Press, Boca Raton, pp 240Google Scholar
  5. Baas-Becking LGM (1930) Observations on Dunaliella viridis Teodoresco. Contributions to Marine Biology, Stanford University, 102–114Google Scholar
  6. Baas-Becking LGM (1931) Salt effects on swarmers of Dunaliella viridis Teod. J Gen Physiol 14:765–779PubMedGoogle Scholar
  7. Ben-Amotz A (1987) Effects of irradiance and nutrient deficiency on the chemical composition of Dunaliella bardawil Ben-Amotz and Avron (Volvocales, Chlorophyta). J Plant Physiol 131:479–487Google Scholar
  8. Ben-Amotz A (1999) Production of beta-carotene from Dunaliella. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 196–204Google Scholar
  9. Ben-Amotz A, Avron M (1973a) The role of glycerol in the osmotic regulation in the halophilic alga, Dunaliella parva. Pl Physiol 51:875–878Google Scholar
  10. Ben-Amotz A, Avron M (1973b) NADP specific dihydroxyacetone reductase from Dunaliella parva. FEBS Lett 29:153–155PubMedGoogle Scholar
  11. Ben-Amotz A, Avron M (1982) The potential use of Dunaliella for the production of glycerol, β-carotene and high-protein feed. In: San Pietro A (ed) Biosaline research: A look to the future. Plenum, New York, pp 207–214Google Scholar
  12. Ben-Amotz A, Avron M (1983) On those factors which determine the massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Pl Physiol 72:593–597Google Scholar
  13. Ben-Amotz A, Avron M (1989) The wavelength dependance of massive carotene synthesis in Dunaliella bardawil (Chlorophyceae). J Phycol 25:175–177Google Scholar
  14. Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterisation of β-carotene-rich globules from Dunaliella barwdawil. J Phycol 18:529–537Google Scholar
  15. Bérubé K, Dodge JD, Ford TW (1999) Effects of chronic salt stress on the ultrastructure of Dunaliella bioculata (Chlorophyta, Volvocales): mechanisms of response and recovery. Europ J Phycol 34:117–123Google Scholar
  16. Bononi M, Commissati I, Lubian E, Fossati A (2002) A simplified method for the HPLC resolution of α-carotene and β-carotene (trans and cis) isomers. Anal Bioanal Chem 372:401–403PubMedGoogle Scholar
  17. Borowitzka LJ, Borowitzka MA (1989) β-Carotene (Provitamin A) production with algae. In: Vandamme EJ (ed) Biotechnology of Vitamins, Pigments and Growth Factors. Elsevier, London, pp 15–26Google Scholar
  18. Borowitzka LJ, Borowitzka MA (1990) Commercial production of β-carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252Google Scholar
  19. Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophilic species of the unicellular green algae, Dunaliella. Arch Microbiol 96:37–52Google Scholar
  20. Borowitzka LJ, Kessly DS, Brown AD (1977) The salt relations in Dunaliella: Further observations on glycerol production and its regulation. Arch Microbiol 113:131–138PubMedGoogle Scholar
  21. Borowitzka MA (1988) Algal growth media and sources of cultures. In: Borowitzka MA, Borowitzka LJ (eds), Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 456–465Google Scholar
  22. Borowitzka MA (2005) Carotenoid production using microorganisms. In: Cohen Z, Rutledge C (eds) Single Cell Oils. AOCSGoogle Scholar
  23. Borowitzka MA, Borowitzka LJ (1988) Dunaliella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 27–58Google Scholar
  24. Borowitzka MA, Borowitzka LJ, Kessly D (1990) Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J Appl Phycol 2:111–119Google Scholar
  25. Borowitzka MA, Huisman JM (1993) The ecology of Dunaliella salina (Chlorophyceae, Volvocales)-Effect of environmental conditions on aplanospore formation. Bot Mar 36:233–243CrossRefGoogle Scholar
  26. Borowitzka MA, Post F, Borowitzka LJ (1982) The life cycle of Dunaliella salina. Australasian Society for Phycology and Aquatic Botany, Annual Meeting 1982, p 18Google Scholar
  27. Butcher RW (1959a) An introductory account of the smaller algae of British coastal waters. Part I. Introduction and Chlorophyceae. Ministry of Agriculture, Fisheries and Food, Great Britain, Fisheries Investigations Series IV, pp 1–74Google Scholar
  28. Butcher RW (1959b) An undescribed species of Dunaliella from the Cambridge collection of algae. Hydrobiologia 12:249–250Google Scholar
  29. Cavara F (1906) Alcune osservazioni sulla Dunaliella salina (Dun.) Teodoresco delle saline di Cagliari. Rend Accad Sc Fis Mat Di Napoli 12:12–27Google Scholar
  30. Chardard R (1987) L’infrastructure du plasmalemme de Dunaliella bioculata (algue verte) mise en vidence d’un cell coat; essay de localisation des charges négatives. Cryptogam Algol 8:173–189Google Scholar
  31. Chardard R (1990) Nouvelles observations sur la structure et al composition du cell-coat de Dunaliella bioculata (Algue verte). Cryptogam Algol 11:137–152Google Scholar
  32. Chitlaru E, Pick U (1991) Regulation of glycerol synthesis in re-sponse to osmotic changes in Dunaliella. Pl Physiol 96:50–60Google Scholar
  33. Christensen T (1962) Alger. In: Böcher TW, Lange M, Sörensen T (eds). Munksgaard, Copenhagen, p 178Google Scholar
  34. Cifuentes AS, Gonzalez M, Conejeros M, Dellarossa V, Parra O (1992) Growth and carotenogenesis in 8 strains of Dunaliella salina Teodoresco from Chile. J Appl Phycol 4:111–118Google Scholar
  35. Cifuentes AS, Gonzaléz MA, Inostroza I, Aguilera A (2001) Reappraisal of the physiological attributes of nine strains of Dunaliella (Chlorophyceae): growth and pigment content across a salinity gradient. J Phycol 37:334–344Google Scholar
  36. Cohn F (1865) Chlamydomonas marina Cohn. Hedwigia 4:97Google Scholar
  37. Desikachari TV (1971) Notes on Volvocales II. Phycologia 10:429–430Google Scholar
  38. Dujardin F (1841) Histoire Naturelle des Zoophytes (Infosoires). ParisGoogle Scholar
  39. Dunal MF (1837) Note sur les algues qui colourent en rouge certaines eaux des marais salants méditerranéens. Compt Rend Acad Sci Ser III-Sciences De La Vie 15:585–587Google Scholar
  40. Dunal MF (1838) Extrait d’un mémoire sur les algues qui colorent en rouge certains eaux des marais salants méditerranéens. Ann Sci Nat Bot Sér 9:172Google Scholar
  41. Ettl H (1965) Untersuchungen an Flagellaten. Österr Bot Z 112:701–745Google Scholar
  42. Ettl H (1976) Die Gattung Chlamydomonas Ehrenberg. (Chlamydomonas und die nächstverwandten Gattungen II). Nova Hedwigia Beih 49:1–1121Google Scholar
  43. Ettl H (1983a) Taxonomische Bemerkungen zu den Phytomonadina. Nova Hedwigia 35:731–736Google Scholar
  44. Ettl H (1983b) Chlorophyta. I. Phytomonadina. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süsswasserflora von Mitteleuropa. Gustav Fischer, Stuttgart, pp 1–807Google Scholar
  45. Eyden BP (1975) Light and electron microscopic study of Dunaliella primolecta Butcher (Volvocida). J Protozool 22:336–344Google Scholar
  46. Fawley MW, Dean ML, Dimmer SK, Fawley KP (2005) Evaluating the morphospecies concept in the Selenastraceae (Chlorophyceae, Chlorophyta). J Phycol 42:142–154Google Scholar
  47. Fazeli MR, Tofighi H, Samadi N, jamalifar H (2006) Effect of salinity on β-carotene production by Dunaliella salina DCCBC26 isolated from the Urmia salt lake, north of Iran. Biores Tech 97:2453–2456Google Scholar
  48. Ginzburg M, Ginzburg BZ (1985) Ion and glycerol concentrations in 12 isolates of Dunaliella. J Exp Bot 36:1064–1074Google Scholar
  49. Gómez P, Gonzaléz M (2001) Genetic polymorphism in eight Chilean strains of the carotenogenic microalga Dunaliella salina Teodoresco (Chlorophyta). Biol Res 34:23–30PubMedGoogle Scholar
  50. Gómez PI, González F (2005) The effect of temperature and irradiance on the growth and carotenogenic capacity of seven strains of Dunaliella salina (Chlorophyta) cultivated under laboratory conditions. Biol Res 38:151–162PubMedCrossRefGoogle Scholar
  51. Gómez PI, Gonzaléz MA (2004) Genetic variation among seven strains of Dunaliella salina (Chlorophyta) with industrial potential, based on RAPD banding patterns and on nuclear ITS rDNA sequences. Aquaculture 233:149–162Google Scholar
  52. González F, Coleman AW, Gómez PI, Montoya R (2001) Phylogenetic relationship among various strains of Dunaliella (Chlorophyceae) based on nuclear ITS rDNA sequences. J Phycol 37:604–611Google Scholar
  53. González MA, Gómez PI, Montoya R (1999) Comparison of PCR-RLFP analysis if the ITS region with morphological criteria of various strains of Dunaliella. J Appl Phycol 10:573–580Google Scholar
  54. Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239PubMedGoogle Scholar
  55. Hajibagheri MA, Gilmour DJ, Collins JC, Flowers TJ (1986) X-ray microanalysis and ultrastructural studies of cell compartments of Dunaliella parva. J Exp Bot 37:1725–1732Google Scholar
  56. Hamburger C (1905) Zur Kenntnis der Dunaliella salina und einer Amöbe aus Salinenwasser von Cagliari. Arch Protistenk 6:111–130, plate 1Google Scholar
  57. Hansgirg A (1886) Prodromus der Algenflora von Böhmen, Erster Theil. Arch Naturwiss Landesforsch Böhmen 5:1–96Google Scholar
  58. Harvey HW (1947) Manganese and the growth of phytoplankton. J Mar Biol Ass UK 22:562–579Google Scholar
  59. Hatanaka Y, Inaoka K, Kobayashi O, Higashihara M, Hiyama K (1998) Sensitivity of the surface coat of the halotolerant green alga Dunaliella parva (Volvocales, Chlorophyceae) to lysozyme. Phycol Res 46:1–147Google Scholar
  60. Hoshaw RW, Malouf LY (1981) Ultrastructure of the green flagellate Dunaliella tertiolecta (Chlorophyceae, Volvocales) with comparative notes on three other species. Phycologia 20:199–206Google Scholar
  61. Hyams J, Chasey D (1974) Aspects of the flagellate apparatus and associated microtubules in a marine alga. Exp Cell Res 8:81–387Google Scholar
  62. Johnson MK, Johnson EJ, McElroy RD, Speer HL, Bruff BS (1968) Effects of salts on the halophilic alga Dunaliella viridis. J Bact 95:1461–1468PubMedGoogle Scholar
  63. Joly N (1840) Histoire d’un petit crustacé (Artemia salina) auquel on a faussement attribué la colouration en rouge des marais salants méditerranéens, suive de recherches sur la cause réelle de cette colouration. Ann Sci Nat Zool Ser 2(13):225Google Scholar
  64. Kalina T (1965) Zur Morphologie und Taxonomie der Gattung Spermatozopsis Korschikow (Volvocales). Spermatozopsis acidophila sp. n. Preslia 37:9–12Google Scholar
  65. Knapp S, Lamas G, Lughadha EN, Novartino G (2004) Stability or stasis in the names of organisms: the evolving codes of nomenclature. Philos Trans R Soc Lond B 359:611–622Google Scholar
  66. Kombrink E, Wöber G (1980a) Preparation of intact chloroplasts by chemically induced lysis of the green alga Dunaliella marina. Planta 149:123–129Google Scholar
  67. Kombrink E, Wöber G (1980b) Identification and subcellular localization of starch-metabolizing enzymes in the green alga Dunaliella marina. Planta 149:130–137Google Scholar
  68. Kombrink E, Wõber G (1982) Chloroplast phosphofructokinase in the green alga, Dunaliella marina: Partial purification and kinetic regulatory properties. Arch Biochem Biophys 213:602–619PubMedGoogle Scholar
  69. Kombrink E, Wöber G, Walker DA (1979) Einfluβ von DEAE-Dextran auf den Elektronentransport in Chloroplasten von Dunaliella marina. Ber Deutsch Bot Ges 92:379–392Google Scholar
  70. Labbé A (1925) Les cycles biologiques des Dunaliella. Arch D’Anate Microsc 21:313–399Google Scholar
  71. Leonardi PI, Caceres EJ (1994) Comparative analysis of the fine structure of young and adult individuals of Dunaliella salina (Polyblepharidaceae, Chlorophyceae) with emphasis on the flagellar apparatus. J Phycol 30:642–653Google Scholar
  72. Leonardi PI, Cáceres EJ (1997) Light and electron microscope observations of the life cycle of Dunaliella salina (Polyblepharidaceae, Chlorophyceae). Nova Hedwigia 64:621–633Google Scholar
  73. Lerche W (1937) Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch Protistenk 88:236–268Google Scholar
  74. Liebetanz B (1925) Hydrobiologische Studien an Kujawischen Brackwässern. Bull Int Acad Pol Sci Lett Sér B 1925:1–116Google Scholar
  75. Lipscomb D, Platnick N, Wheeler Q (2003) The intellectual content of taxonomy: a comment on DNA taxonomy. Trends Ecol Evol 18:65–66Google Scholar
  76. Loeblich LA (1972) Studies on the brine flagellate Dunaliella salina. PhD Thesis, University of California, San DiegoGoogle Scholar
  77. Loeblich LA (1969) Aplanospores of Dunaliella salina Chlorophyta. J Protozool 16:22–23Google Scholar
  78. Loeblich LA (1982) Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J Mar Biol Ass UK 62:493–508CrossRefGoogle Scholar
  79. Mallet J, Willmott K (2003) Taxonomy: rennaisance or Tower of Babel? Trends Ecol Evol 18:57–59Google Scholar
  80. Marano F (1976) Etude ultrastructurale de la division chez Dunaliella. J Microsc Biol Cell 25:279–282Google Scholar
  81. Marano F (1992). Flagellar apparatus, cell motility and phototaxis. In: Avron M, Ben-Amotz A (eds) Dunaliella: Physiology, Biochemistry, and Biotechnology. CRC Press, Boca Raton, pp17–44Google Scholar
  82. Marano F, Santa-Maria A, Krishnaswamy S (1985) The flagellar apparatus of Dunaliella: isolation of basal body-flagellar root complex. Protoplasma 127:82–92Google Scholar
  83. Margulis L, Barghoorn ES, Ashendorf D, Banerjee S, Chase D, Francis S, Giovanonni S, Stolz J (1980) The microbial community in layered sediments at Laguna Figueroa, Baja California, Mexico: Does it have Precambrian analogues? Precamb Res 11:93–123Google Scholar
  84. Massyuk NP (1969) A new species of the genus Dunaliella Teod. Ukr Bot Zh 26:87–90Google Scholar
  85. Massyuk NP (1971) New species of Dunaliella with asymmetric cells. Ukr Bot Zh 28:148Google Scholar
  86. Massyuk NP (1972) Phylogeny and taxonomy of the genus Dunaliella. Ukr Bot Zh 29:744–749Google Scholar
  87. Massyuk NP (1973a) New taxa of the genus Dunaliella Teod. II. Ukr Bot Zh 30:345Google Scholar
  88. Massyuk NP (1973b) New taxa of the genus Dunaliella Teod. I. Ukr Bot Zh 30:175Google Scholar
  89. Massyuk NP (1973c) Morphology, Taxonomy, Ecology and Geographic Distribution of the Genus Dunaliella Teod. and Prospects for its Potential Utilization. Naukova Dumka, Kiev, p242Google Scholar
  90. Massyuk NP, Radchenko MI (1973) New taxa of the genus Dunaliella Teod. III. Ukr Bot Zh 30:470–471Google Scholar
  91. McLachlan J (1960) The culture of Dunaliella tertiolecta Butcher - a euryhaline organism. Can J Microbiol 6:367–375CrossRefGoogle Scholar
  92. Melkonian M, Kröger KH, Marquardt KG (1980) Cell shape and microtubules in zoospores of the green alga Chlorosarcinopsis gelatinosa (Chlorosarcinales): Effects of low temperature. Protoplasma 104:283–293Google Scholar
  93. Melkonian M, Preisig HR (1984) An ultrastructural comparison between Spermatopsis and Dunaliella (Chlorophyceae). Pl Sys Evol 164:31–46Google Scholar
  94. Mil’ko ES (1963) Effect of various environmental factors on pigment production in the alga Dunaliella salina. Mikrobiologya 32:299–307Google Scholar
  95. Montoya H, Olivera A (1993) Dunaliella salina from saline environments of the central coast of Peru. Hydrobiologia 267:155–161Google Scholar
  96. Müller J, Friedl T, Hepperle D, Lorenz M, Day JG (2005) Distinction between multiple isolates of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing for conspecificity using amplified fragment length polymorphism and ITS rDNA sequences. J Phycol 41:1236–1247Google Scholar
  97. Nicolai E, Baas-Becking LGM (1935) Einige Notizen über Salzflagellaten. Arch Protistenk 85:319–328Google Scholar
  98. Nozaki H, Ohta N, Morita E, Watanabe MM (1998) Toward a natural system of species in Chlorogonium (Volvocales, Chlorophyta): a combined analysis of morphological and rbcL gene sequence data. J Phycol 34:1024–1037Google Scholar
  99. Oliveira L, Bisalputra T, Antia NJ (1980) Ultrastructural observation of the surface coat of Dunaliella tertiolecta from staining with cationic dyes and enzyme treatments. New Phytol 85:385–392Google Scholar
  100. Oliviera L, Huynh H (1989) Ultrastructure and cytochemistry of Dunaliella tertiolecta Butcher and Pavlova lutheri (Droop) Green grown on three different sources of organic nitrogen. New Phytol 113:481–490Google Scholar
  101. Olmos J, Paniagua J, Contreras R (2000) Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Lett Appl Microbiol 30:80–84PubMedGoogle Scholar
  102. Olmos-Soto J, Paniagua-Michel J, Contreras PR, Trujillo L (2002) Molecular identification of β-carotene hyper-producing strains of Dunaliella from saline environments using species-specific oligonucleotides. Biotech Lett 24:365–369Google Scholar
  103. Oren A (2005) A hundred years of Dunaliella research. Saline Syst 1:1–14Google Scholar
  104. Orset S, Young AJ (1999) Low temperature-induced synthesis of α-carotene in the microalga Dunaliella salina (Chlorophyta). J Phycol 35:520–527Google Scholar
  105. Pascher A, Jahoda R (1928) Neue Polyblepharidinen und Chlamydomonadinen aus den Almtümpeln um Lunz. Arch Protistenk 61:239–281Google Scholar
  106. Penn ABK (1938) Die Cytologie der Zellteilung von Dunaliella (Teodoresco). Arch Protistenk 90:162–164Google Scholar
  107. Peterfi LS, Manton I (1968) Observations with the electron microscope on Asteromonas gracilis Artari emend. (Stephanoptera gracilis (Artari) Wisl.), with some comparative observations on Dunaliella sp. Brit Phycol Bull 3:423–440Google Scholar
  108. Pfeifhofer AO, Belton JC (1975) Ultrastructural changes in chloroplasts resulting from fluctuations in NaCl concentration: freeze-fracture of thylakoid membranes in Dunaliella salina. J Cell Sci 18:287–299PubMedGoogle Scholar
  109. Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105:95–113Google Scholar
  110. Preisig HR (1992) Morphology and taxonomy. In: Avron M, Ben-Amotz A (eds) Dunaliella: Physiology, Biochemistry, and Biotechnology. CRC Press, Boca Raton, pp 1–15Google Scholar
  111. Pröschold T, Harris EH, Coleman AW (2005) Portrait of a species: Chlamydomonas reinhardtii. Genetics 170:1601–1610PubMedGoogle Scholar
  112. Raja R, Iswarya SH, Balasubramanyam D, Rengasamy R (2007) PCR-identification of Dunaliella salina (Volvocales, Chlorophyta) and its growth characteristics. Microbiol Res 162:168-176Google Scholar
  113. Ruinen J (1938) Notizen über Salzflagellaten. II. Über die Verbreitung der Salzflagellaten. Arch Protistenk 90:210–258Google Scholar
  114. Samanamud A (1998) Crecimiento e historia de vida de Dunaliella salina de las salinas de los Chimus, Ancash y de Chilca, Lima, Peru. In: de Paula, EJ, M Corediro-Marino, DP Santos, EM Plastino, MT Fujii, NS Yokoya (eds), Anais do IV Congresso Latino-Americano, II Reuniao Iberio-Americana, VII Reunião Brasileira, de Ficologia. Volume II. Sociedade Ficologica de America Latina e Caribe and Sociatade Brasiliera de Ficologia, Caxambu, Brazil, pp 309–324Google Scholar
  115. Schlegel M, Meisterfeld R (2003) The species problem in protozoa revisited. Europ J Protistol 39:349–355Google Scholar
  116. Spurr AR (1969) Low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastr Res 26:31–43Google Scholar
  117. Teodoresco EC (1905) Organisation et développement du Dunaliella, nouveau genre de Volvocacée-Polyblépharidée. Bot Zentralbl Beih 18:215–232Google Scholar
  118. Teodoresco EC (1906) Observations morphologiques et biologiques sur le genre Dunaliella. Rev Gen Bot 118:353–371Google Scholar
  119. Tseng CK (1993) Notes on mariculture in China. Aquaculture 111:21–30Google Scholar
  120. Uriarte I, Farias A, Hawkins AJS, Bayne BL (1993) Cell characteristics and biochemical composition of Dunaliella primolecta Butcher conditioned at different concentrations of dissolved nitrogen. J Appl Phycol 5:447–453Google Scholar
  121. Vladimirova MG (1978) Ultrastructural organization of the cell of Dunaliella salina and functional changes of it in relation to light intensity and temperature. Soviet Pl Physiol 25:443–449Google Scholar
  122. Watanabe S (1983) New and interesting green algae from soils of some Asian and Oceanian regions. Arch Protistenk 127:223–270Google Scholar
  123. Watanabe S, Floyd GL (1989) Variation in the ultrastructure of the biflagellate motile cells of six unicellular genera of the Chlamydomonadales and Chlorococcales (Chlorophyta), with emphasis on the flagellar apparatus. Am J Bot 76:307–317Google Scholar
  124. Wheeler QD (2004) Taxonomic triage and the poverty of phylogeny. Philos Trans R Soc Lond B 359:571–583Google Scholar
  125. Wilcox LW, Lewis LA, Fuerst PA, Floyd GL (1992) Group I introns within nuclear-encoded small-subunit rRNA gene of three green algae. Molec Biol Evol 9:1103–1118PubMedGoogle Scholar
  126. Wood AM, Leatham T (1992) The species concept in phytoplankton ecology. J Phycol 28:723–729Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Algae Research Laboratory, School of Biological Sciences and BiotechnologyMurdoch UniversityMurdochAustralia

Personalised recommendations