Journal of Applied Phycology

, Volume 18, Issue 3–5, pp 475–481 | Cite as

A Genomic and Phylogenetic Perspective on Endosymbiosis and Algal Origin

  • Hwan Su Yoon
  • Jeremiah D. Hackett
  • Debashish Bhattacharya


Accounting for the diversity of photosynthetic eukaryotes is an important challenge in microbial biology. It has now become clear that endosymbiosis explains the origin of the photosynthetic organelle (plastid) in different algal groups. The first plastid originated from a primary endosymbiosis, whereby a previously non-photosynthetic protist engulfed and enslaved a cyanobacterium. This alga then gave rise to the red, green, and glaucophyte lineages. Algae such as the chlorophyll c-containing chromists gained their plastid through secondary endosymbiosis, in which an existing eukaryotic alga (in this case, a rhodophyte) was engulfed. Another chlorophyll c-containing algal group, the dinoflagellates, is a member of the alveolates that is postulated to be sister to chromists. The plastid in these algae has followed a radically different path of evolution. The peridinin-containing dinoflagellates underwent an unprecedented level of plastid genome reduction with the ca. 16 remaining genes encoded on 1–3 gene minicircles. In this short review, we examine algal plastid diversity using phylogenetic and genomic methods and show endosymbiosis to be a major force in algal evolution. In particular, we focus on the evolution of targeting signals that facilitate the import of nuclear-encoded photosynthetic proteins into the plastid.

Key words

algal evolution chromalveolates endosymbiosis gene transfer plastid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304: 441–445.PubMedCrossRefGoogle Scholar
  2. Apt KE, Zaslavkaia L, Lippmeier JC, Lang M, Kilian O, Wetherbee R, Grossman AR, Kroth PG (2002) In vivo characterization of diatom multipartite plastid targeting signals. J. Cell Sci. 115: 4061–4069.PubMedCrossRefGoogle Scholar
  3. Archibald JM, Keeling PJ (2002) Recycled plastids: A ‘green movement’ in eukaryotic evolution. Trends in Genet. 18: 577–584.CrossRefGoogle Scholar
  4. Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proceedings of the National Academy of Sciences of the Unite States of America 100: 7678–7683.CrossRefGoogle Scholar
  5. Bachvaroff TR, Concepcion GT, Rogers CR, Herman EM, Delwiche CF (2004) Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Protist 155: 65–78.PubMedCrossRefGoogle Scholar
  6. Baldauf SL (2003) The deep roots of eukaryotes. Science 300: 1703–1706.PubMedCrossRefGoogle Scholar
  7. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290: 972–977.PubMedCrossRefGoogle Scholar
  8. Bhattacharya D, Medlin L (1995) The phylogeny of plastids: A review based on comparisons of small-subunit ribosomal RNA coding regions. J. Phycol. 31: 489–498.CrossRefGoogle Scholar
  9. Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: Endosymbiosis connects the dots. BioEssays 26: 50–60.PubMedCrossRefGoogle Scholar
  10. Cavalier-Smith T (1986) The kingdon chromista: Origin and systematics. In: Round FE, Chapman DJ (eds.) Progress in Phycological Research No. 4, Biopress, Bristol, pp 309–347.Google Scholar
  11. Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol. Rev. 73: 203–266.PubMedCrossRefGoogle Scholar
  12. Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Eukaryot. Microbiol. 46: 347–366.PubMedGoogle Scholar
  13. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends in Plant Sci. 5: 174–182.CrossRefGoogle Scholar
  14. Chesnick JM, Kooistra WH, Wellbrock U, Medlin LK (1997) Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J. Eukaryot. Microbiol. 44: 314–320.PubMedGoogle Scholar
  15. Ciniglia C, Yoon HS, Pollio A, Pinto G, Bhattacharya D (2004) Hidden biodiodiversity of the extremophilic Cyanidiales red algae. Mol. Ecol. 13: 1827–1838.PubMedCrossRefGoogle Scholar
  16. Delwiche CF, Kuhsel M, Palmer J. D (1995) Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Mol. Phylogenet. Evol. 4: 110–128.PubMedCrossRefGoogle Scholar
  17. Douglas SE (1998) Plastid evolution: Origins, diversity, trends. Curr. Opin. Genet. Dev. 8: 655–661.PubMedCrossRefGoogle Scholar
  18. Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature 350: 148–151.PubMedCrossRefGoogle Scholar
  19. Eckart K, Eichacker L, Sohrt K, Schleiff E, Heins L, Soll J (2002) A toc75-like protein import channel is abundant in chloroplasts. EMBO Reports 3: 557–562.PubMedCrossRefGoogle Scholar
  20. Fast NM, Kissinger JC, Roos DS, Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18: 418–426.PubMedGoogle Scholar
  21. Funes S,Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP, Gonzalez-Halphen D (2002) A green algal apicoplast ancestor. Science 298: 2155.PubMedCrossRefGoogle Scholar
  22. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511.PubMedCrossRefGoogle Scholar
  23. Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can. J. Bot. 56: 2883–2889.Google Scholar
  24. Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Annals of the New York Academy of Sciences 361: 193–208.PubMedGoogle Scholar
  25. Gray MW (1992) The endosymbiont hypothesis revisited. Int. Rev. Cytol. 141: 233–357.PubMedCrossRefGoogle Scholar
  26. Hackett JD, Maranda L, Yoon HS, Bhattacharya D (2003) Phylogeneticevidence for the cryptophyte origin of the plastid of Dinophysis (dinophysiales, dinophyceae). J. Phycol. 39: 440–448.Google Scholar
  27. Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D (2004) Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr. Biol. 14: 213–218.PubMedCrossRefGoogle Scholar
  28. Harper JT, Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol. Biol. Evol. 20: 1730–1735.PubMedCrossRefGoogle Scholar
  29. Hedges SB, Blair JE, Venturi ML, Shoe JL (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4: 2.PubMedCrossRefGoogle Scholar
  30. Heins L, Soll J, Collinson I (1998) The protein translocation apparatus of chloroplast envelopes. Trends in Plant Sci. 3: 56–61.CrossRefGoogle Scholar
  31. Ishida K, Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (psbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proceedings of the National Academy of Sciences of the United States of America 99: 9294–9299.PubMedCrossRefGoogle Scholar
  32. Kilian O, Kroth PG (2003) Evolution of protein targeting into “complex” plastids: The “secretory transport hypothesis”. Plant Biol. 5: 350–358.CrossRefGoogle Scholar
  33. Lopez-Garcia P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409: 603–607.PubMedCrossRefGoogle Scholar
  34. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, CT.Google Scholar
  35. Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol. 118: 9–17.PubMedCrossRefGoogle Scholar
  36. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Aarabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences of the United States of America 99: 12246–12251.PubMedCrossRefGoogle Scholar
  37. Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653–657.PubMedCrossRefGoogle Scholar
  38. McFadden GI (1999). Plastids and protein targeting. J. Eukaryot. Microbiol. 46: 339–346.PubMedGoogle Scholar
  39. McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J. Phycol. 37: 951–959.CrossRefGoogle Scholar
  40. McFadden GI, van Dooren GG (2004) Evolution: Red algal genome affirms a common origin of all plastids. Curr. Biol. 14: R514–R516.PubMedCrossRefGoogle Scholar
  41. McFadden GI, Gilson PR, Hofmann CJ, Adcock GJ, Maier UG (1994)Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proceedings of the National Academy of Sciences of the United States of America 91: 3690–3694.PubMedCrossRefGoogle Scholar
  42. Mereschkowsky C (1905) Uber natur und usprung der chromatophoren im pflanzeneiche. Biologisches Centralblatt 25: 593–604.Google Scholar
  43. Moon-van der Staay SY, Wachter RDe, Vaulot D (2001) Oceanic 18s rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607–610.PubMedCrossRefGoogle Scholar
  44. Moreira D, Le Guyader H, Phillippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405: 69–72.PubMedCrossRefGoogle Scholar
  45. Nassoury N, Cappadocia M, Morse D (2003) Plastid ultrastructure defines the protein import pathway in dinoflagellates. J. Cell Sci. 116: 2867–2874.PubMedCrossRefGoogle Scholar
  46. Palmer JD (2003) The symbiotic birth and spread of plastids: How many times and whodnuit. J. Phycol. 39: 4–12.CrossRefGoogle Scholar
  47. Sulli C, Fang Z, Muchhal U, Schwartzbach SD (1999) Topology of Euglena chloroplast protein precursors within endoplasmic reticulum to Golgi to chloroplast transport vesicles. J. Biol. Chem. 274: 457–463.PubMedCrossRefGoogle Scholar
  48. Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (2000) Phylogenetic analyses indicate that the 19'hexanoyloxy-fucoxanthin- containing dinoflagellates have tertiary plastids of haptophyte origin. Mol. Biol. Evol. 17: 718–729.PubMedGoogle Scholar
  49. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66–74.PubMedCrossRefGoogle Scholar
  50. Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America 95: 12352–12357.PubMedCrossRefGoogle Scholar
  51. Waller RF, Keeling PJ, van Dooren GG, McFadden GI (2003) Comment on “a green algal apicoplast ancestor”. Science 301: 49.PubMedCrossRefGoogle Scholar
  52. Waller RF, Reed MB, Cowman AF, McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J. 19: 1794–1802.PubMedCrossRefGoogle Scholar
  53. Watanabe MM, Suda S, Inouye I, Sawaguchi T, Chihara M (1990) Lepidodinium viride gen. et sp. nov. (Gymnodiniales, Dinophyta), a green dinoflagellate with chlorophyll a- and b-containing endosymbiont. J. Phycol. 26: 741–751.Google Scholar
  54. Williamson DH, Gardner MJ, Preiser P, Moore DJ, Rangachari K, Wilson RJ (1994) The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: Newevidence supports a possible rhodophyte ancestry. Mol. Gen. Genet. 243: 249–252.PubMedGoogle Scholar
  55. Yoon HS, Hackett JD, Bhattacharya D (2002a) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proceedings of the National Academy of Sciences of the United States of America 99: 11724–11729.CrossRefGoogle Scholar
  56. Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21: 809–818.PubMedCrossRefGoogle Scholar
  57. Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002b) The single, ancient origin of chromist plastids. Proceedings of the National Academy of Sciences of the United States of America 99: 15507–15512.CrossRefGoogle Scholar
  58. Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400: 155–159.PubMedCrossRefGoogle Scholar
  59. Zhang Z, Green BR, Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: A possible common origin for sporozoan and dinoflagellate plastids. J. Mol. Evol. 51: 26–40.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Hwan Su Yoon
    • 1
  • Jeremiah D. Hackett
    • 1
  • Debashish Bhattacharya
    • 1
  1. 1.Department of Biological Sciences and "Roy J. Carver" Center for Comparative GenomicsUniversity of IowaIowa CityUSA

Personalised recommendations