Abstract
This study evaluates whether Spirulina, including its components such as phycocyanin, enhances or sustains immune functions by promoting immune competent-cell proliferation or differentiation. The effects of Spirulina of a hot-water extract (SpHW), phycocyanin (Phyc), and cell-wall component extract (SpCW) on proliferation of bone marrow cells and induction of colony-forming activity in mice were investigated. The Spirulina extracts, SpHW, Phyc, and SpCW, enhanced proliferation of bone-marrow cells and induced colony-forming activity in the spleen-cell culture supernatant. Granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3) were detected in the culture supernatant of the spleen cells stimulated with the Spirulina extracts. Bone marrow-cell colony formation in soft-agar assay was also significantly induced by the blood samples and the culture supernatants of the spleen and Peyer's patch cells of the mice which ingested Spirulina extracts orally for 5 weeks in in vivo study. Ratios of neutrophils and lymphocytes in the peripheral blood and bone marrow, consequently, increased in the mice.
Spirulina may have potential therapeutic benefits for improvement of weakened immune functions caused by, for example, the use of anticancer drugs.
This is a preview of subscription content, access via your institution.
References
Belay A (1997) Mass culture of Spirulina outdoor—The Earthrise Farm experience In: Vonshak A (ed.) Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor & Francis Ltd., UK. pp. 131–158.
Belay A (2002) The potential application of Spirulina (Arthorspira) as a nutritional and therapeutic supplement in health management. J. Am. Nutraceut. Ass. 5: 27–48.
Belay A, Ota Y, Miyakawa K, Shimamatsu H (1993) Current knowledge on potential health benefits of Spirulina. J. Appl. Phycol. 5: 235–241.
Ciferri O (1983) Spirulina, the edible microorganisms. Microbiol. Res. 47: 551–578.
Collins SJ (2002) The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 16: 1905–1986.
Groopman JE, Feder D (1992) Hematopoietic growth factors in AIDS. Seminars in Oncology 19: 408–414.
Hayashi O, Hirahashi T, Katoh T, Miyajjima H, Hirano T, Okuwaki Y (1998) Class specific influence of dietary Spirulina platensis on antibody production in mice. J. Nutr. Sci. Vitaminol. (Tokyo). 44: 841–851.
Hayashi O, Katoh T, Okuwaki Y (1994) Enhancement of antibody production in mice by dietary Spirulina platensis. J. Nutr. Sci. Vitaminol. (Tokyo). 40: 431–441.
Hirahashi T, Matsumoto M, Hazeki K, Saeki Y, Ui M, Seya T (2002) Activation of the human innate immune system by Spirulina: augmentaion of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis. Int. J. Immunopharmacol. 2: 423–734.
Hudson L, Hay FC (1976) Practical Immunology. Blackwell Scientific, London. 298 pp.
Ihle JN (1992) Interleukin-3 and hematopoiesis. Chem. Immunol. 51: 65–106.
Kay RA (1991) Microalgae as food and supplement. Crit. Rev. Food Sci. Nutr. 30: 555–573.
Kobori M, Miyama Y, Tsushida T, Shinmoto H, Shinohara K (1995) Effect of non-dialyzable extracts of vegetables on the differentiation of U-937 human myeloid leukemia cell line. Nippon Shokuhin Kagaku Kogaku Kaishi 42: 61–68.
Kobori M, Shinohara K (1993) Effects of spinach extract on the differentiation of the human promyelocytic cell line, HL-60. Biosci. Biotechnol. Biochem. 57: 1951–1952.
Liu Y, Xu L, Cheng N, Lin L, Zhang C (2000) Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. J. Appl. Phycol. 12: 125–130.
Mao TK, Van De Water J, Gershwin ME (2000) Effect of Spirulina on the secretion of cytokines from peripheral blood mononuclear cells. J. Med. Food 3: 135–140.
Metcalf D, Foster R (1967) Bone marrow colony-stimulation activity of serum from mice with viral-induced leukemia. J. Natl. Cancer Inst. 39: 1235–1245.
Moore G, Gerener R, Franklin H (1967) Culture of normal human leukocytes. JAMA 199: 519–524.
Nemoto-Kawamura C, Hirahashi T, Nagai T, Yamada H, Katoh T, Hayashi O (2004) Phycocyanin enhances secretory IgA antibody responses and suppresses allergic IgE antibody response in mice immunized with antigen-entrapped biodegradable microparticles. J. Nutr. Sci. Vitaminol. (Tokyo). 50: 129–136.
Obermeier H, Hrboticky N, Sellmayer A (1995) Differential effects of polyunsaturated fatty acids on cell growth and differentiation of premonocytic U937 cells. Biochim. Biophys. Acta 1266: 179–185.
Page B, Page M, Noël C (1993) A new fluorometric assay for cytotoxicity measurements in vitro. Int. J. Oncol. 3: 473–476.
Rao RD, Anderson PM, Arndt CA, Wettstein PJ, Markovic SN (2003) Aerosolized granulocyte macrophage colony-stimulating factor (GM-CSF) therapy in metastatic cancer. Am. J. Clin. Oncol. 26: 493–498.
Sacha T, Zawada M, Hartwich J, Lach Z, Polus A, Szostek M, Zdzitowska E, Libura M, Bodzioch M, Dembinska-Kiec A, Skotnicki A, Goralczyk R, Wertz K, Riss G, Moele C, Langmann T, Schmitz G (2005) The effect of beta-carotene and its derivatives on cytotoxicity, differentiation, proliferative potential and apoptosis on the three human acute leukemia cell lines: U-937, HL-60 and TF-1. Biochim. Biophys. Acta. 1740: 206–214.
Scadden DT (1997) Cytokine use in the management of HIV disease. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 16(Suppl. 1): S23–S29.
Shinohara K, Okura Y, Koyano T, Murakami H, Omura H (1988) Algal phycocyanins promote growth of human cells in culture. In Vitro Cell. Dev. Biol. 2: 1057–1060.
Valtieri M, Tweardy DJ, Caracciolo D, Johnson K, Mavilio F, Altmann S, Santoli D, Rovera G (1987) Cytokine-dependent granulocytic differentiation. Regulaion of proliferative and differentiative responses in a murine progenitor cell line. J. Immunol. 138: 3829–3835.
Vose JM, Armitage JO (1995) Clinical applications of hematopoietic growth factors. J. Clin. Oncol. 13: 1023–1035.
Yoshida M, Tanaka Y, Eguchi T, Ikekawa N, Nagahiro S (1992) Effect of hexafluoro-1,25-dihydoxy vitamin D3 and sodium butyrate combination on differentiation and proliferation of HL-60 leukemia cells. Anticancer Res. 12: 1947–1952.
Zhang C-W (1994) Effect of polysaccharide and phycocyanin from Spirulina on peripheral blood and hematopoietic system of bone marrow in mice. Proceeding of 2nd Asia Pacific Conference on Algal Biotechnology, China: 58.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hayashi, O., Ono, S., Ishii, K. et al. Enhancement of proliferation and differentiation in bone marrow hematopoietic cells by Spirulina (Arthrospira) platensis in mice. J Appl Phycol 18, 47–56 (2006). https://doi.org/10.1007/s10811-005-9014-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10811-005-9014-6