A photobioreactor system for computer controlled cultivation of microalgae

Abstract

A bioreactor system was developed for the cultivation of the microalgae Synechocystis sp. PCC6803 under controlled physiological conditions. The determination of the actual physiological state of the microalgae was provided by inline recording of chlorophyll fluorescence parameters. A feed-back loop was employed to keep the microalgae in a defined physiological state. For the construction of this feed-back loop, the temporal behaviour of the system was investigated using changes in light conditions (as caused by modulated UVB radiation) as input signal and chlorophyll fluorescence as output signal. The reproducibility of the responses was high. Kinetic analysis based on curve fitting revealed two time constants in the UVB-induced responses. The knowledge of these time constants was utilised for the development of an efficient feed-back loop which allows the cultivation of the microalgae in a defined physiological state. This new process strategy (called physiostat) was successfully tested. The performance in a culture of growing microalgae is shown.

This is a preview of subscription content, log in to check access.

References

  1. Bode HW (1945) Network analysis and feedback amplifier design. Van Nostrand, New York.

    Google Scholar 

  2. Campbell D, Eriksson MJ, Öquist G, Gustafsson P, Clarke AK (1998) The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc. Natl. Acad. Sci. 95: 364–369.

    PubMed  Article  CAS  Google Scholar 

  3. Chaturvedi R, Shyam R (2000) Degradation and de novo synthesis of D1 protein and psbA transcript level in Chlamydomonas reinhardtii during UV-B inactivation of photosynthesis and its reactivation. J. Biosci. 25: 65–71.

    PubMed  CAS  Article  Google Scholar 

  4. Cohen Z (1999) Chemicals from Microalgae. Taylor and Francis Ltd., London, 419 pp.

    Google Scholar 

  5. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87–92.

    CAS  Google Scholar 

  6. Gomez P, Barriga A, Cifuentes AS, Gonzalez MA (2003) Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) chlorophyta. Biol. Res. 36: 185-192.

    PubMed  CAS  Article  Google Scholar 

  7. Hansen UP, Dau H, Brüning B, Fritsch T, Moldaenke C (1991) Linear analysis applied to the comparative study of the I-D-P phase chlorophyll fluorescence as induced by actinic PS-II light, PS-I light and changes in CO2-concentration. Photosynth. Res. 28: 119–130.

    Article  CAS  Google Scholar 

  8. Huang L, McCluskey MP, Ni H, LaRossa RA (2002) Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J. Bacteriol. 184: 6845–6858.

    PubMed  Article  CAS  Google Scholar 

  9. Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38: 1646–1665.

    CAS  Article  Google Scholar 

  10. Lao K, Glazer AN (1996) Ultraviolet-B photodestruction of a light-harvesting complex. Proc. Natl. Acad. Sci. 93: 5258–5263.

    PubMed  Article  CAS  Google Scholar 

  11. Lippemeier S, Hintze R, Vanselow KH, Hartig P, Colijn F (2001) In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis. Eur. J. Phycol. 36: 89-100.

    Article  Google Scholar 

  12. Lippemeier S, Frampton D, Blackburn S, Geier S, Negri A (2003) Influence of phosphorus limitation on toxicity and photosynthesis of Alexandrium minutum (dinophyceae) monitored by in-line detection of variable chlorophyll fluorescence. J. Phycol. 39: 320–331.

    CAS  Article  Google Scholar 

  13. MacDonald TM, Dubois L, Smith LC, Campbell DA (2003) Sensitivity of cyanobacterial antenna, reaction center and CO2 assimilation transcripts and proteins to moderate UVB: Light acclimation potentiates resistance to UVB, Photochem. Photobiol. 77: 405–412.

    Article  CAS  Google Scholar 

  14. Máté Z, Sass L, Szekeres M, Vass I, Nagy F (1998) UV-B-induced differential transcription of psbA genes encoding the D1 protein of photosystem II in the cyanobacterium Synechocystis 6803. J. Biol. Chem. 273: 17439–17444.

    PubMed  Article  Google Scholar 

  15. Mundt S, Kreitlow S, Jansen R (2003) Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. J. Appl. Phycol. 15: 263–267.

    Article  CAS  Google Scholar 

  16. Reuter M (1994) Regelungstechnik für Ingenieure. Vieweg, Braunschweig, 153 pp.

    Google Scholar 

  17. Richmond A (2004) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science Ltd., Oxford, 566 pp.

    Google Scholar 

  18. Rippka R, Herdman M (1992) Pasteur culture collection of cyanobacterial strains in axenic culture. Vol. 1. Cataloque of Strain. Institute Pasteur, Paris, 103 pp.

  19. Sinha R, Kumar H, Kumar A, Häder DP (1995) Effects of UV-B Irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in cyanobacteria. Acta Protozool. 34: 187–192.

    CAS  Google Scholar 

  20. Sinha R, Häder DP (2002) UV-induced DNA damage and repair: A review. Photochem. Photobiol. Sci. 1: 225–236.

    PubMed  Article  CAS  Google Scholar 

  21. Schreiber U, Hormann H, Neubauer C, Klughammer C (1995a). Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust. J. Plant Physiol. 22: 209–220.

    CAS  Article  Google Scholar 

  22. Schreiber U, Bilger W, Neubauer C (1995b) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED and Caldwell MM (eds.) Ecophysiology of Photosynthesis, Springer-Verlag, Berlin, pp. 49–70.

    Google Scholar 

  23. v. Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25: 147–150.

    Article  Google Scholar 

  24. Vanselow KH, Kolbowski J, Hansen UP (1988) Analysis of chlorophyll fluorescence by means of noisy light. J. Exp. Bot. 40: 247–256.

    Article  Google Scholar 

  25. Vass I, Sass L, Spetea C, Bakou A, Ghanotakis D, Petrouleas V (1996) UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry. 35: 8964–8973.

    PubMed  Article  CAS  Google Scholar 

  26. Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (chlorophyceae) as an active photoprotective process under high irradiance. J. Phycol. 39: 1116–1124.

    Article  CAS  Google Scholar 

  27. Zolla L, Bianchetti M, Rinalducci S (2002) Functional studies of the Synechocystis phycobilisomes organization by high performance liquid chromatography on line with a mass spectrometer. Eur. J. Biochem. 269: 1534–1542.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kai Marxen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marxen, K., Vanselow, K.H., Lippemeier, S. et al. A photobioreactor system for computer controlled cultivation of microalgae. J Appl Phycol 17, 535–549 (2005). https://doi.org/10.1007/s10811-005-9004-8

Download citation

Key words

  • chlorophyll fluorescence
  • control loop
  • frequency analysis
  • optical sensors
  • physiostat
  • UVB-radiation