Advertisement

Journal of Applied Phycology

, Volume 17, Issue 3, pp 215–222 | Cite as

Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp

  • Tehila Tannin-Spitz
  • Margalit Bergman
  • Dorit van-Moppes
  • Shlomo Grossman
  • Shoshana (Malis) Arad
Article

Abstract

The cells of the red microalga Porphyridium UTEX 637 are encapsulated within a sulfated polysaccharide whose external part (i.e., the soluble fraction) dissolves into the medium. It is thought that the main function of the polysaccharide is to protect the algal cells from the extreme environmental conditions, such as drought and high light, prevailing in their native sea-sand habitat. In this study, we evaluated the antioxidant properties of the water-soluble polysaccharide of Porphyridium sp. by determining the ability of a polysaccharide solution to inhibit: (1) autooxidation of linoleic acid, as determined by the standard thiobarbituric acid (TBA) and ferrous oxidation (FOX) assays; and (2) oxidative damage to 3T3 cells as determined by the dichlorofluorescein (DCFH) assay. In all three assays, the polysaccharide inhibited oxidative damage in a dose-dependent manner. Antioxidant activity was also exhibited by fractions of the polysaccharide obtained by sonication followed by separation on a reverse-phase HPLC with a C8 semi-preparative column. It is suggested that the antioxidant activity of the sulfated polysaccharide protects the alga against reactive oxygen species produced under high solar irradiation, possibly by scavenging the free radicals produced in the cell under stress conditions and transporting them from the cell to the medium.

Key Words

antioxidant Porphyridium, reactive oxygen species red microalgae sulfated polysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adda M, Merchuk JC, Arad (Malis) S (1986) Effect of nitrate on growth and production of cell wall polysaccharide by the unicellular red alga Porphyridium. Biomass 10: 131–140.CrossRefGoogle Scholar
  2. Albertini R, Rindi S, Passi A, Bardoni A, Salvini R, Pallavicini G, De Luca G (1996) The effect of cornea proteoglycans on liposome peroxidation. Arch. Biochem. Biophys. 327: 209–214.CrossRefPubMedGoogle Scholar
  3. Arad (Malis) S (1988) Production of sulfated polysaccharides from red unicellular algae. In Stadler T, Mollion J, Verdus, MC, Karamanos Y, Morvan H, Christiaen D (eds), Algal Biotechnology, Elsevier Applied Science, London, UK, pp. 65–87.Google Scholar
  4. Arad S, Weinstein Y (2003) Novel lubricants from red microalgae: Interplay between genes and products. Biomedic. (Israel) 1: 32–37.Google Scholar
  5. Bar E, Rise M, Vishkautsan M, Arad (Malis) S (1995) Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J. Plant Physiol. 46: 527–534.Google Scholar
  6. Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: Purification and characterization of β-carotene rich globules from Dunaliella bardawil (Chlorophyceae). J. Phycol. 18: 529–537.CrossRefGoogle Scholar
  7. Bergman M, Varshavsky L, Gottlieb H, Grossman S (2001) The antioxidant activity of aqueous spinach extract; chemical identification of active fractions. Phytochemistry 58: 143–152.CrossRefPubMedGoogle Scholar
  8. Bergman M. Perelman A, Dubinsky Z, Grossman, S (2003) Scavenging of reactive oxygen species by a novel glucuronated flavonoid antioxidant isolated and purified from spinach. Phytochemistry 62: 753–762.CrossRefPubMedGoogle Scholar
  9. Changu X., Guangli Y, Takashi H, Junji T, Hong L (1998) Antioxidative activities of several marine polysaccharides evaluated in a phosphatidylcholine–liposomal suspension and organic solvents. Biosci. Biotechnol. Biochem. 62: 206–209.CrossRefPubMedGoogle Scholar
  10. Cook NC, Samman S (1996) Flavanoids chemistry, metabolism, cardioprotective effects and dietary sources. Nutr. Biochem. 7: 66–76.CrossRefGoogle Scholar
  11. Eteshola E, Gottlieb M, Arad (Malis) S (1996) Dilute solution viscosity of red microalga exopolysaccharide. Chem. Eng. Sci. 51: 1487–1494.CrossRefGoogle Scholar
  12. Eteshola E, Karpasas M, Arad (Malis) S, Gottlieb M (1998) Red microalga exopolysaccharides: 2. Study of the rheology, morphology and thermal gelation of aqueous preparations. Acta Polym. 49: 549–556.Google Scholar
  13. Geresh S, Arad (Malis) S (1991) The extracellular polysaccharide of the red microalgae: Chemistry and Rheology. Biores. Technol. 38: 195–201.CrossRefGoogle Scholar
  14. Grossman S, Zakut R (1979) Determination of the activity of lipoxygenase (lipoxidase). Methods Biochem. Anal. 25: 303–329.PubMedGoogle Scholar
  15. Huang M-T, Ho C-T, Lee CY (1992) Phenolic compounds in food and their effects on health. II. Antioxidant and cancer prevention. ACS Symposium Series 507, American Chemical Society, Washington, D.C.Google Scholar
  16. Huleihel M, Ishanu V, Tal J, Arad (Malis) S (2001) Antiviral effect of red microalgal polysaccharide on Herpes simplex and Varicella zoster viruses. J. appl. Phycol. 13: 127–134.CrossRefGoogle Scholar
  17. Johnson FA, Lewis MJ (1979) Astaxanthin formation by yeast Phaffia rhodozyma. J. gen. Microbiol. 115: 173–189.Google Scholar
  18. Jones RF, Speer HL, Kury W (1963) Studies on the growth of the red alga Porphyridium cruentum. Physiol. Pl. 16: 636–643.Google Scholar
  19. Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27: 969–978.CrossRefGoogle Scholar
  20. Lee MJ, Kwon H, Jeong H, Lee JW, Lee SY, Baek S, Surh YJ (2001) Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum. Phytother. Res. 15: 245–249.CrossRefPubMedGoogle Scholar
  21. Li SY, Lellouche J, ShabtaiY, Arad (Malis) S (2001) Fixed carbon partitioning in the red microalga Porphyridium sp. (Rhodophyta). J. Phycol. 37: 289–297.CrossRefGoogle Scholar
  22. Liu F, Ooi, VEC, Chang ST (1997) Free radical scavenging of mushroom polysaccharide extracts. Life Sci. 60: 763–771.CrossRefPubMedGoogle Scholar
  23. Lomnitski L (2003), Composition, efficacy and safety of spinach antioxidants. Nutr. Cancer 46: 222–231.CrossRefPubMedGoogle Scholar
  24. Matsui SM, Muizzudin N, Arad S, Marenus K (2003) Sulfated polysaccharides from red microalgae anti-inflammatory properties in vitro and in vivo. appl. Biochem. Biotechnol. 104 (1): 13–22.CrossRefPubMedGoogle Scholar
  25. Ramus J, Groves ST (1972) Incorporation of sulfate into the capsular polysaccharide of the red alga Porphyridium. J. Cell Biol. 54: 399–407.CrossRefPubMedGoogle Scholar
  26. Rice-Evans CA, Burdon R (1993) Free radical lipid interactions and their pathological consequences. Prog. Lipid Res. 32: 71–110.CrossRefPubMedGoogle Scholar
  27. Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chem W, Knapp W, Zlabinger GJ (1992) A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescein diacetate. J. Immunol. Methods 156: 39–45.CrossRefPubMedGoogle Scholar
  28. Ruperez P, Ahrazem Q, Leal JA (2002) Potential antioxidant activity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 50: 840–845.CrossRefPubMedGoogle Scholar
  29. Savins JC (1978) Oil recovery process employing thickened aqueous driving fluid. Patent No. 4,079,544. United States Patent.Google Scholar
  30. Shrestha RP, Weinstein Y, Bar–Zvi D, Arad (Malis) S (2004) A non–covalently bound cell wall glycoprotein of the red microalga Porphyridium sp. J. Phycol. 40: 568–580.Google Scholar
  31. Thepenier C, Gudin C, Thomas D (1985) Immobilization of Porphyridium cruentum in polyurethane foam for the production of polysaccharide. Biomass 7: 225–240.CrossRefGoogle Scholar
  32. Tsiapali E, Whaley S, Kalbfleisch J, Ensley HE, Browder IW, Williams DL (2001) Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Rad. Biol. Med. 30: 393–402.CrossRefPubMedGoogle Scholar
  33. Wasowicz W, Neve J, Peretz A (1993) Optimized steps in fluorometric determination of thiobarbituric acid–reactive substances in serum: Importance of extraction pH and influence of sample preservation and storage. Clin. Chem. 39: 2522–2526.PubMedGoogle Scholar
  34. Wolf SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurment of hydroperoxides. In: Packer L (ed.), Methods in Enzymology, Academic Press Inc., pp. 182–189.Google Scholar
  35. Xue CH, Fang Y, Lin H, Chen L, Li ZJ, Deng D, Lu CX (2000) Chemical characters and antioxidant properties of sulfated polysaccharides from Laminaria japonica. J. appl. Phycol. 13: 1–5.Google Scholar
  36. Yaron A, Dvir I, Maislos M, Mokady S, Arad (Malis) S (1995) The red microalga Rhodella reticulata as a source of dietary ω-3 highly unsaturated fatty acid- eicosapentaenoic acid. In Charalambous G (ed.). Food Flavors: Generation, Analysis and Process Influence. Elsevier Science B.V. 665–674.Google Scholar
  37. Zaho X, Xue CH, Li ZJ, Cai YP, Liu HY, Qi HT (2004) Antioxidant and hepatoprotective activities of low molecular weight sulfated polysaccharide from Laminaria japonica. J. appl. Phycol. 16: 111–115.CrossRefGoogle Scholar
  38. Zhang Q, Yu P, Li Z, Zhang H, Xu Z, Li P (2003) Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J. appl. Phycol. 15: 305–310.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Tehila Tannin-Spitz
    • 1
  • Margalit Bergman
    • 1
  • Dorit van-Moppes
    • 2
  • Shlomo Grossman
    • 1
  • Shoshana (Malis) Arad
    • 2
  1. 1.Faculty of Life SciencesBar-Ilan UniversityRamat GanIsrael
  2. 2.The Institute for Applied BiosciencesBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations