Skip to main content
Log in

Formation of a spall cavity in a dielectric during electrical explosion

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The wave dynamics of the stress-strain state of a solid dielectric during electrical explosion near its surface is analyzed. A quantitative model of an electrical explosion is developed which describes the operation of a high-voltage generator, the expansion of the discharge channel, and the generation and distribution of shock-wave perturbations. Two mechanisms of formation of a spall cavity on the surface of the solid are considered: the less energetic mechanism implemented by means of the waves reflected from the surface, and the more energetic mechanism in which result from the action of a direct wave of compressive stresses. The effects of the reflection surface shape and the mode of energy input into the channel on the possible fracture pattern are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Vorob’ev, Rock Breaking by Electrical Pulse Discharges [in Russian], Izd. Tomsk. Univ., Tomsk (1961).

    Google Scholar 

  2. B. V. Semkin, A. F. Usov, and V. I. Kurets, Fundamentals of Material Fracture by an Electrical Pulse [in Russian], Nauka, St. Petersburg (1995).

    Google Scholar 

  3. V. T. Kazub, G. S. Korshunov, and A. T. Chepikov, “On the formation of a discharge in a system of electrodes located at the interface between liquid and solid dielectrics,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 61–66 (1978).

  4. G. A. Mesyatz, “On the nature the Vorob’evykh effect in the physics of pulse breakdown of solid dielectrics,” Pis’ma Zh. Tekh. Fiz., 31, No. 24, 51–59 (2005).

    Google Scholar 

  5. G. Z. Usmanov, V. V. Lopatin, M. D. Noskov, and A. A. Cheglokov, “Simulation of electrical discharge development at interface of solid and liquid dielectric,” Izv. Vyssh. Uchebn. Zaved., Fiz., 10, 231–234 (2006).

    Google Scholar 

  6. V. Ya. Ushakov, V. F. Klimkin, S. M. Korobeinikov, and V. V. Lopatin, in: V. Ya. Ushakov (ed.), Breakdown of Liquids by a Pulsed Voltage [in Russian], Izd. Nauch. Tekh. Lit., Tomsk (2005).

    Google Scholar 

  7. A. A. Vorob’ev and G. A. Vorob’ev, Electrical Breakdown and Fracture of Solid Dielectrics [in Russian], Vysshaya Shkola, Moscow (1966).

    Google Scholar 

  8. I. V. Timoshkin, J. W. Mackersie, and S. J. MacGregor, “Plasma channel miniature hole drilling technology,” IEEE Trans., Plasma Sci., 32, No. 5, 2055–2061 (2004).

    Article  ADS  Google Scholar 

  9. D. Jgun, M. Jurkov, V. Lopatin, et al., “Application of pulsed discharges for materials cutting,” in: Digest of Paper of Europ. Pulsed Energy Symp., Saint Louis, France (2002), pp. 22/1–22/4.

    Google Scholar 

  10. V. V. Burkin, N. S. Kuznetsova, and V. V. Lopatin, “Analysis of mechanisms of rock destruction in electro discharge drilling,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 11 (Append.), 507–510 (2006).

  11. V. V. Burkin, N. S. Kuznetsova, and V. V. Lopatin, “Modeling of electrical explosion in solid dielectrics in electrical discharge technologies,” Izv. Tomsk. Politech. Univ., 309, No. 2, 70–75 (2006).

    Google Scholar 

  12. V. V. Burkin, “Characteristics of the explosive action associated with the pulsed electrical breakdown of hard materials,” Combust., Expl., Shock Waves, No. 4, 484–487 (1985).

  13. Yu. N. Vershinin, Electron-Thermal and Detonation Processes during Electrical Breakdown of Solid Dielectrics [in Russian], Izd. Ural. Otd. Ross. Akad. Nauk, Ekaterinburg (2000).

    Google Scholar 

  14. V. V. Burkin, N. S. Kuznetsova, and V. V. Lopatin, “Dynamics of electrical explosion in a solid dielectric immersed in a liquid,” in: Fundamental and Applied Problems of Modern Mechanics, Proc. 5th Al-Russian Conf. (Tomsk, October 3–5, 2006), Tomsk. Politekh. Univ., Tomsk (2004), pp. 104–106.

    Google Scholar 

  15. R. Rompe and W. Weizel, “Über das Toeplersche Funkengesetz,” Z. Phys. B, 122, 9–12 (1944).

    Google Scholar 

  16. B. V. Semkin, A. F. Usov, and N. T. Zinov’ev, Transient Processes in Electric-Pulse Facilities [in Russian], Nauka, St. Petersburg (2000).

    Google Scholar 

  17. M. L. Wilkins, “Calculation of elastic-plastic flow,” in: B. Alder, S. Frenbach, and M. Rotenberg (eds.), Methods of Computational Physics, Academic Press, New York-London (1964).

    Google Scholar 

  18. M. Born and M. Göppert-Mayer, Handbuch der Physik, Springer-Verlag, Berlin (1933).

    Google Scholar 

  19. K. A. Naugolnykh and N. A. Roi, Electrical Discharges in Water [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  20. I. Z. Okun’, “Calculation of liquid pressure on a piston at a constant speed of piston expansion,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, Issue 1, 126–130 (1968).

  21. K. P. Stanyukovich (ed.), Physics of Explosion [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  22. E. N. Bellendir, V. V. Belyaev, and O. B. Naimark, “Kinetics of multifocal fracture under spalling conditions,” Pis’ma Zh. Tekh. Fiz., 15, No. 13, 90–93 (1989).

    Google Scholar 

  23. J. A. Zukas, T. Nicholas, H. F. Swift, A. B. Greszczuk, and D. R. Curran, Impact Dynamics, New York, Wiley (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Burkin.

Additional information

__________

Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 51, No. 1, pp. 162–172, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkin, V.V., Kuznetsova, N.S. & Lopatin, V.V. Formation of a spall cavity in a dielectric during electrical explosion. J Appl Mech Tech Phy 51, 137–144 (2010). https://doi.org/10.1007/s10808-010-0021-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-010-0021-2

Key words

Navigation