Skip to main content
Log in

Gap in a continuous spectrum of an elastic waveguide with a partly clamped surface

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A periodic elastic waveguide whose continuous spectrum contains a gap (interval that can contain a discrete spectrum only) is constructed. The gap prevents wave propagation in the corresponding range of frequencies, which can be used in designing filters and dampers of elastic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Solid [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  2. S. A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Decrease in Dimension and Integral Estimates [in Russian], Nauch. Kniga, Novosibirsk (2002).

    Google Scholar 

  3. F. Ursell, “Trapping modes in the theory of surface waves,” Proc. Cambridge Philos. Soc., 47, 347–358 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  4. A.-S. Bonnet-Bendhia, J. Duterte, and P. Joly, “Mathematical analysis of elastic surface waves in topographic waveguides,” Math. Mod. Meth. Appl. Sci., 9, No. 5, 755–798 (1999).

    Article  MathSciNet  Google Scholar 

  5. D. V. Evans, M. Levitin, and D. Vasil’ev, “Existence theorems for trapped modes,” J. Fluid Mech., 261, 21–31 (1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. A.-S. Bonnet-Bendhia and F. Starling, “Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem,” Math. Meth. Appl. Sci., 77, 305–338 (1994).

    Article  MathSciNet  Google Scholar 

  7. I. Roitberg, D. Vassiliev, and T. Weidl, “Edge resonance in an elastic semi-strip,” Quart. J. Appl. Math., 51, No. 1, 1–13 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. V. Sukhinin, “Waveguide, anomalous, and whispering properties of a periodic chain of obstacles,” Sib. Zh. Indust. Mat., 1, No. 2, 175–198 (1998).

    MATH  MathSciNet  Google Scholar 

  9. I. V. Kamotskii and S. A. Nazarov, “Wood anomalies and surface waves in problems of scattering on a periodic boundary. 1,” Mat. Sb., 190, No. 1, 109–138 (1999).

    MathSciNet  Google Scholar 

  10. I. V. Kamotskii and S. A. Nazarov, “Wood anomalies and surface waves in problems of scattering on a periodic boundary. 2,” Mat. Sb., 190, No. 2, 43–70 (1999).

    MathSciNet  Google Scholar 

  11. I. V. Kamotskii and S. A. Nazarov, “Elastic waves localized near periodic families of defects,” Dokl. Ross. Akad. Nauk, 368, No. 6, 771–773 (1999).

    MathSciNet  Google Scholar 

  12. I. V. Kamotskii and S. A. Nazarov, “Exponentially decaying solutions of the problem of diffraction on a rigid periodic grating,” Mat. Zametki, 73, No. 1, 138–140 (2003).

    MathSciNet  Google Scholar 

  13. S. A. Nazarov, “Trapping modes for a cylindrical elastic waveguide with a damping gasket,” Zh. Vychisl. Mat. Mat. Fiz., 48, No. 5, 132–150 (2008).

    Google Scholar 

  14. P. A. Kuchment, “Floquet theory for partial differential equations,” Usp. Mat. Nauk, 37, No. 4, 3–52 (1982).

    MathSciNet  Google Scholar 

  15. M. M. Skriganov, Geometric and Arithmetic Methods in the Spectral Theory of Multi-Dimensional Periodic Operators [in Russian], Nauka, Leningrad (1985). (Transactions of Steklov Mathematical Institute, Academy of Sciences of the USSR, Vol. 171.)

    Google Scholar 

  16. P. Kuchment, Floquet Theory for Partial Differential Equations, Birchäuser, Basel (1993).

    MATH  Google Scholar 

  17. S. A. Nazarov, “Rayleigh waves for an elastic half-layer with a partly clamped periodic boundary,” Dokl. Ross. Akad. Nauk, 423, No. 1, 56–61 (2008).

    Google Scholar 

  18. A. Figotin and P. Kuchment, “Band-gap structure of spectra of periodic dielectric and acoustic media. 1. Scalar model,” SIAM J. Appl. Math., 56, 68–88 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Figotin and P. Kuchment, “Band-gap structure of spectra of periodic dielectric and acoustic media. 2. Two-dimensional photonic crystals,” SIAM J. Appl. Math., 56, 1561–1620 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  20. E. L. Green, “Spectral theory of Laplace-Beltrami operators with periodic metrics,” J. Differential Equations, 133, 15–29 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Hempel and K. Lineau, “Spectral properties of the periodic media in large coupling limit,” Commun. Part. Differ. Equat., 25, 1445–1470 (2000).

    Article  MATH  Google Scholar 

  22. L. Friedlander, “On the density of states of periodic media in the large coupling limit,” Commun. Part. Differ. Equat., 27, 355–380 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  23. V. V. Zhikov, “On gaps in the spectrum of some divergent elliptic operators with periodic coefficients,” Algebra Analiz, 6, No. 5, 34–58 (2004).

    Google Scholar 

  24. P. Kuchment, “The mathematics of photonic crystals,” in: Mathematical Modeling in Optical Science, Vol. 22, SIAM (2001), pp. 207–272.

    MathSciNet  ADS  Google Scholar 

  25. N. Filonov, “Gaps in the spectrum of the Maxwell operator with periodic coefficients,” Comm. Math. Phys., 240, Nos. 1/2, 161–170 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. I. Ts. Gokhberg and M. G. Krein, Introduction into the Theory of Non-Self-Adjoint Operators [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  27. S. A. Nazarov, “Elliptic boundary-value problems with periodic coefficients in a cylinder,” Izv. Akad. Nauk SSSR, Ser. Mat., 45, No. 1, 101–112 (1981).

    MATH  MathSciNet  Google Scholar 

  28. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin-New York (1994).

    MATH  Google Scholar 

  29. O. A. Ladyzhenskaya, Boundary-Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  30. M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in the Hilbert Space [in Russian], Izd. Leningr. Univ., Leningrad (1980).

    Google Scholar 

  31. K. O. Friedrichs, “On the boundary value problems of the theory of elasticity and Korn’s inequality,” Ann. Math., 48, 441–471 (1947).

    Article  MathSciNet  Google Scholar 

  32. P. P. Mosolov and V. P. Myasnikov, “Proof of the Korn inequality,” Dokl. Akad. Nauk SSSR, 201, No. 1, 36–39 (1971).

    MathSciNet  Google Scholar 

  33. V. A. Kondrat’ev and O. A. Oleinik, “Boundary-value problems for a system of the elasticity theory in unbounded domains. Korn inequality,” Usp. Mat. Nauk, 43, No. 5, 55–98 (1988).

    MATH  MathSciNet  Google Scholar 

  34. S. A. Nazarov, “Korn inequalities asymptotically exact for thin domains,” Vestn. S.-Peterb. Gos. Univ., Ser. 1, Issue 2, No. 8, 19–24 (1992).

  35. S. A. Nazarov, “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates,” in: Problems of Mathematical Analysis (collected scientific papers) [in Russian], No. 17, Izd. S.-Peterb. Gos. Univ., St. Petersburg (1997), pp. 101–152.

    Google Scholar 

  36. S. A. Nazarov, “Korn inequalities for elastic unions of massive bodies, thin plates, and rods,” Usp. Mat. Nauk, 63, No. 5, 37–110 (2008).

    Google Scholar 

  37. S. A. Nazarov, “Korn inequality for elastic union of a body with a rod,” in: Problems of Mechanics of Deformable Solids [in Russian], Izd. S.-Peterb. Gos. Univ., St. Petersburg (2002), pp. 234–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 51, No. 1, pp. 134–146, January–February, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarov, S.A. Gap in a continuous spectrum of an elastic waveguide with a partly clamped surface. J Appl Mech Tech Phy 51, 114–124 (2010). https://doi.org/10.1007/s10808-010-0018-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-010-0018-x

Key words

Navigation