Skip to main content
Log in

Experimental-theoretical study of the penetration of rigid projectiles and identification of soil properties

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The parameters of the Grigoryan soil model are determined using an experimental-computational method previously proposed and the results of reversed experiments on penetration of projectiles with flat and hemispherical heads at impact velocities of 50–450 m/sec in sandy soil. It is shown that the quasistationary dependences of the resistance force on impact velocity obtained in the reversed experiment can be used to solve problems of deep penetration of projectile in soil with an error not exceeding the measurement error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kh. A. Rakhmatullin, A. Ya. Sagomonyan, and N. A. Alekseev, Problems of Soil Dynamics [in Russian], Izd. Mosk. Gos. Univ., Moscow (1964).

    Google Scholar 

  2. A. Ya. Sagomonyan, Penetration [in Russian], Izd. Mosk. Gos. Univ., Moscow (1974).

    Google Scholar 

  3. V. N. Aptukov, Applied Theory of Penetration [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  4. V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov, et al., High-Velocity Interaction of Bodies [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (1999).

    Google Scholar 

  5. M. E. Backman and W. Goldsmith, “The mechanics of penetration of projectiles into targets,” Int. J. Eng. Sci., 16, No. 1, 1–99 (1978).

    Article  Google Scholar 

  6. W. Goldsmith, “Non-ideal projectiles impact on targets,” Int. J. Impact Eng., 22, No. 1, 95–395 (1999).

    Article  Google Scholar 

  7. A. G. Gorshkov and D. V. Tarlakovskii, Impact on Soil: Mechanics of Contact Interactions [in Russian], Fizmatlit, Moscow (2001), pp. 409–416.

    Google Scholar 

  8. Yu. K. Bivin, V. V. Viktorov, and L. P. Stepanov, “Motion of a solid in clay,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 159–165 (1978).

  9. Yu. N. Bukharev, V. P. Gandurin, A. E. Korablev, et al., “Experimental study of the penetration of a rigid projectile in a clay medium and snow,” in: Applied Problems of Strength and Plasticity: An Analysis and Optimization of Structures [in Russian], Nizhny Novgorod State University, Novgorod (1991), pp. 99–106.

    Google Scholar 

  10. G. E. Hauver, “Penetration with instrumented rods,” Int. J. Eng. Sci., 16, No. 11, 871–877 (1978).

    Article  Google Scholar 

  11. B. V. Balandin and A. M. Bragov, “Experimental technique for measuring resistance forces during interaction of a projectile with soil,” in: Applied Problems of Strength and Plasticity: Methods of Solution [in Russian], Nizhny Novgorod State University, Novgorod (1991), pp. 101–104.

    Google Scholar 

  12. Yu. K. Bivin, “Motion of a solid in a perturbed medium,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 91–98 (2002).

  13. Yu. K. Bivin, V. V. Viktorov, and B. Ya. Kovalenko, “Determination of the dynamic characteristics of soils using a penetration method,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 105–110 (1980).

  14. Yu. K. Bivin, V. A. Kolesnikov, and L. M. Flitman, “Determination of the mechanical properties of media using a dynamic penetration method,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 181–185 (1982).

  15. I. K. Kokhanenko, S. F. Maklakov, and V. A. Prishchepa, “Determination of the shear strength of soil under dynamic loading,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 182–184 (1990).

  16. Yu. N. Bukharev, A. E. Korablev, and M. I. Khaimovich, “Experimental determination of shear stress on the projectile surface during dynamic penetration in soil,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 186–188 (1995).

  17. D. B. Balashov and N. V. Zvolinskii, “Flow of an elastoplastic medium past a cone,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 46–53 (1996).

  18. L. Ya. Lyubin and A. S. Povitzkii, “Oblique impact of a solid on soils,” J. Appl. Mech. Tech. Phys., No. 1, 55–60 (1966).

  19. F. M. Borodich, “Dynamic interaction of blunted axisymmetric solids on soil,” Prikl. Mekh., 24, No. 11, 117–121 (1988).

    Google Scholar 

  20. L. M. Flitman, “High-velocity nonseparation elastoplastic flow around a blunted body,” Prikl. Mat. Mekh., 54, No. 4, 642–651 (1990).

    MathSciNet  Google Scholar 

  21. A. G. Akopyan, “Penetration of a rigid cone into a plastically orthotropic half-space,” J. Appl. Mech. Tech. Phys., No. 5, 159–163 (1991).

    Google Scholar 

  22. D. A. Demen’shin and S. V. Krylov, “Numerical modeling of normal penetration of solids in porous soils,” in: Applied Problems of Strength and Plasticity: Numerical Modeling of Physicomechanical Processes, Nizhny Novgorod State University, Nizhny Novgorod (1991), pp. 103–106.

    Google Scholar 

  23. S. S. Grigoryan, “Approximate solution of the problem of penetration of a body in soil,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 18–24 (1993).

  24. V. A. Kolesnikov, “Calculation of the trajectory and estimation of the dimensions of the strain localization zone during penetration of a sphere in soil,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 59–64 (1997).

  25. K. Yu. Osipenko and I. V. Simonov, “Supersonic flow of a porous medium around a cone,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 87–96 (2001).

  26. M. J. Forrestal, D. B. Longcope, F. R. Norwood, et al., “A model to estimate forces on conical penetrators into dry porous rock,” Trans. ASME, J. Appl. Mech., 48, No. 3. 25–29 (1981).

    Article  Google Scholar 

  27. X. W. Chen and Q. M. Li, “Deep penetration of a non-deformable projectile with different geometrical characteristics,” Int. J. Impact Eng., 27, 619–637 (2002).

    Article  Google Scholar 

  28. T. L. Warren, S. J. Hanchak, and K. L. Poormon, “Penetration of limestone targets by head-nosed VAR 4340 steel projectiles at oblique angles: Experiments and simulations,” Int. J. Impact Eng., 30, 1307–1331 (2004).

    Article  Google Scholar 

  29. D. Durban and R. Masri, “Conical indentation of strain-hardening solids,” Europ. J. Mech., A: Solids., 27, 210–221 (2008).

    Article  MATH  ADS  Google Scholar 

  30. Z. Rosenberg and E. Dekel, “A numerical study of the cavity expansion process and quantity application to long-rod penetration mechanics,” Int. J. Impact Eng., 35, 147–154 (2008).

    Article  Google Scholar 

  31. W. Allen, E. Mayfield, and H. Morrison, “Dynamics of a projectile penetrating sand,” J. Appl. Phys., 28, 370 (1957).

    Article  MATH  ADS  Google Scholar 

  32. Yu. K. Bivin, “Penetration of solids in loose and layered media,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 154–160 (2008).

  33. G. V. Rykov, “Experimental study of the stress field during explosion in sandy soil,” J. Appl. Mech. Tech. Phys., No. 1, 85–89 (1964).

    Google Scholar 

  34. V. A. Lagunov and V. A. Stepanov, “Measurement of dynamic compressibility of sand at high pressures,” J. Appl. Mech. Tech. Phys., No. 1, 88–96 (1963).

    Google Scholar 

  35. M. Dianov, N. A. Zlatin, S. M. Mochalov, et al., “Shock compressibility of dry and water-saturated sand,” Pis’ma Zh. Tekh. Nauk, 2, No. 12, 529–532 (1976).

    Google Scholar 

  36. A. M. Bragov and G. M. Grushevskii, “Effect of the humidity and grain size on the shock compressibility of sand,” Pis’ma Zh. Tekh. Nauk, 19, No. 12, 70–72 (1993).

    Google Scholar 

  37. A. M. Bragov, V. V. Balandin, A. K. Lomunov, and A. R. Filippov, “Determination of the shock adiabat of soft soils from the results of reversed experiments,” Pis’ma Zh. Tekh. Nauk, 32, No. 11, 52–55 (2006).

    Google Scholar 

  38. A. M. Bragov, G. M. Grushevsky, and A. K. Lomunov, “Use of the Kolsky method for confined tests of soft soils,” Exp. Mech., 36, No. 3, 237–242 (1996).

    Article  Google Scholar 

  39. A. M. Bragov, V. L. Kotov, A. K. Lomunov, and I. V. Sergeichev, “Measurement of the dynamic characteristics of soft soils using the Kolsky method,” J. Appl. Mech. Tech. Phys., 45, No. 4, 580–585 (2004).

    Article  ADS  Google Scholar 

  40. V. G. Bazhenov “Mathematical modeling and methods of identification of the deformation and strength characteristics of materials,” Fiz. Mezomekh., 10, No. 5. 91–105 (2007).

    Google Scholar 

  41. S. S. Grigoryan, “Main concepts of soil dynamics,” Prikl. Mat. Mekh., No. 4. 1057–1072 (1960).

  42. B. V. Zamyshlyaev, Models of Dynamic Deformation and Failure of Soil Media [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  43. V. I. Kondaurov, I. B. Petrov, and A. S. Kholodov, “Numerical modeling of the process of penetration of a rigid body of revolution into an elastoplastic barrier,” J. Appl. Mech. Tech. Phys., No. 4, 625–632 (1984).

    Google Scholar 

  44. G. A. Kirilenko and A. Ya. Sagomonyan, “Numerical modeling of penetration in a soil,” Izv. Akad. Nauk ArmSSR, Mekhanika, 39, No. 1, 47–51 (1986).

    MATH  Google Scholar 

  45. S. M. Bakhrakh, O. A. Vinokurov, G. V. Gorbenko, et al., “Numerical investigation of the process of nondeformable cylinder penetration at constant velocity into a compressible fluid,” J. Appl. Mech. Tech. Phys., No. 5, 815–810 (1989).

    Google Scholar 

  46. V. G. Bazhenov, A. M. Bragov, V. L. Kotov, and A. V. Kochetkov, “Investigation of the impact and penetration of solids of revolution in a soft soil,” Prikl. Mat. Mekh., 67, No. 4, 686–697 (2003).

    MATH  Google Scholar 

  47. V. G. Bazhenov, V. L. Kotov, S. V. Krylov, et al., “Experimental-theoretical analysis of nonstationary interaction of deformable impactors with soil,” J. Appl. Mech. Tech. Phys., 42, No. 6. 1083–1089 (2001).

    Article  Google Scholar 

  48. V. G. Bazhenov, V. L. Kotov “Identification of the dynamic compressibility and shear resistance of soil during penetration of projectiles,” Dokl. Ross. Akad. Nauk, 408, No. 3, 333–336 (2006).

    Google Scholar 

  49. V. G. Bazhenov and V. L. Kotov, “Method of identification of the elastoplastic properties of soils during penetration of projectiles,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 4, 184–190 (2008).

  50. V. G. Bazhenov, V. L. Kotov, A. V. Kochetkov, et al., “Numerical modeling of loading of sandy soil by explosion of a pressure charge,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 70–77 (2001).

  51. V. L. Kotov, “Application of the Grigoryan model to problems of dynamic deformation of sandy soil,” in: Problems of Strength and Plasticity (collected scientific papers) [in Russian], No. 66, Nizhny Novgorod State University, Nzhny Novgorod (2004), pp. 123–127.

    Google Scholar 

  52. V. G. Bazhenov, E. A. Kozlov, and S. V. Krylov, “Numerical modeling of nonlinear two-dimensional problems of shock interaction of deformable media and structures using the Godunov method,” in: Applied Problems of Strength and Plasticity: Investigation and Optimization of Structures (collected scientific papers), Gor’kii Univ., Gor’kii (1990), pp. 99–106.

    Google Scholar 

  53. V. G. Bazhenov and V. L. Kotov, “Modification of Godunov’s numerical scheme for solving problems of pulsed loading of soft soils,” J. Appl. Mech. Tech. Phys., 43, No. 4, 603–611 (2002).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Kotov.

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 6, pp. 115–125, November–December, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazhenov, V.G., Bragov, A.M. & Kotov, V.L. Experimental-theoretical study of the penetration of rigid projectiles and identification of soil properties. J Appl Mech Tech Phy 50, 1011–1019 (2009). https://doi.org/10.1007/s10808-009-0135-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-009-0135-6

Key words

Navigation