Skip to main content
Log in

Ovsyannikov plane vortex: The equations of the submodel

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A submodel of the equations of ideal magnetohydrodynamics is constructed that generalizes the classical motion of an ideal continuous medium with plane waves. It is shown that, in contrast to classical motion, in this submodel the velocity and magnetic-field vectors can change direction in a plane orthogonal to a distinguished spatial direction. The submodel is described by a system of equations with two independent variables and a finite relation specifying the orientation of the vector fields in space. The solutions of the submodel define substantially spatial processes and singularities in the motion of continuous media which cannot be studied in the classical one-dimensional formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York (1982).

    MATH  Google Scholar 

  2. P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York (1986).

    MATH  Google Scholar 

  3. L. V. Ovsyannikov, “Singular vortex,” J. Appl. Mech. Tech. Phys., 36, No 3, 360–366 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. P. Chupakhin, “Invariant submodels of the sungular vortex,” Prikl. Mat. Mekh., 67, No. 3, 390–405 (2003).

    MATH  MathSciNet  Google Scholar 

  5. A. A. Cherevko and A. P. Chupakhin, “Ovsyannikov stationary vortex,” Preprint No. 1-2005, Institute of Hydrodynamics, Sib. Div., Russian Acad. of Sci., Novosibirsk (2005).

    Google Scholar 

  6. A. P. Chupakhin, “Singular vortex in hydro-and gas dynamics,” in: Analytical Approaches to Multidimensional Equilibrium Laws, Nova Sci. Publ., S. l (2005), pp. 89–118.

  7. A. A. Cherevko and A. P. Chupakhin, “Homogeneous sungular vortex,” J. Appl. Mech. Tech. Phys., 45, No. 2, 209–221 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. S. Pavlenko, “Projective submodel of the Ovsyannikov vortex,” J. Appl. Mech. Tech. Phys., 46, No. 4, 459–470 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  9. S. V. Golovin, “Singular vortex in magnetohydrodynamics,” J. Phys., A, 38, 4501–4516 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. S. V. Golovin, “Invariant solutions of the singular vortex in magnetohydrodynamics,” J. Phys., A, 38, 8169–8184 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. S. V. Golovin, “Generalization of the one-dimensional ideal plasma flow with spherical waves,” J. Phys., A, 39, 7579–7595 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. L. V. Ovsyannikov, “Type (2, 1) regular submodels of the equations of gas dynamics,” J. Appl. Mech. Tech Phys., 37, No. 2, 149–158 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. V. Golovin, “Ovsyannikov plane vortex: motion properties and exact solutions,” J. Appl. Mech. Tech. Phys., (in press.)

  14. A. G. Kulikovskii and G. A. Lyubimov, Magnetohydrodynamics [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  15. J. C. Fuchs, “Symmetry groups and similarity solutions of MHD equations,” J. Math. Phys., 32, 1703–1708 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 2: Applications in Engineering and Physical Sciences, CRC Press, Boca Raton (1995).

    Google Scholar 

  17. L. V. Ovsyannikov, “The Sumodel program. Gas dynamics,” Prikl. Mat. Mekh., 58, No. 4, 30–55 (1994).

    MathSciNet  Google Scholar 

  18. A. M. Grundland and L. Lalague, “Lie subgroups of the symmetry group of the equations describing a nonstationary and isentropic flow: Invariant and partially invariant solutions,” Canad. J. Phys., 72, No. 7/8, 362–374 (1994).

    MATH  ADS  MathSciNet  Google Scholar 

  19. L. V. Ovsyannikov, Lectures on the Foundation of Gas Dynamics [in Russian], Institute of Computer Studies, Izhevsk (2003).

    Google Scholar 

  20. A. Jeffrey and T. Taniuti, Non-Linear Wave Propagation with Applications to Physics and Magnetohydrodynamics, Academic Press, New York-London (1964).

    MATH  Google Scholar 

  21. E. Priest and T. Forbs, Magnetic Reconnection: MHD Theory and Applications, Cambridge University Press, Cambridge (2000).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Golovin.

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 27–40, September–October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golovin, S.V. Ovsyannikov plane vortex: The equations of the submodel. J Appl Mech Tech Phy 49, 725–736 (2008). https://doi.org/10.1007/s10808-008-0091-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-008-0091-6

Key words

Navigation