Skip to main content
Log in

Gas-dynamic colliders: Numerical simulations

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A collision of supersonic flows of gas mixtures with disparate molecular weights, which are limited in their cross-sectional size, in vacuum leads to formation of a cloud with an elevated concentration and elevated temperature of the heavy gas. Under certain conditions, the governing factor is the collision of molecules of the heavy gas being compressed at the center of the collision of the flows. The generator of such a flow can be called a collider. Results of studying the flows in jet-type, cylindrical, and mixed two-stage colliders are described. The main attention is paid to separation of gases in terms of energy and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Mais and J. B. Fenn, “Recovery factor measurements in gas mixtures,” Phys. Fluids, 7, No. 7, 1080 (1964).

    Article  Google Scholar 

  2. A. A. Bochkarev, V. A. Kosinov, V. G. Prikhod’ko, and A. K. Rebrov, “Effects of diffusion separation when hypersonic flows of a rarefied gas mixture collide,” J. Appl. Mech. Tech. Phys., 12, No. 2, 313–317 (1971).

    Article  Google Scholar 

  3. A. A. Bochkarev, V. A. Kosinov, V. G. Prikhod’ko, and A. K. Rebrov, “Flow of a supersonic low-density jet of nitrogen and nitrogen-hydrogen mixture over a blunt body,” J. Appl. Mech. Tech. Phys., 13, No. 6, 804–808 (1972).

    Article  Google Scholar 

  4. A. K. Rebrov, “Review on gas jet deposition,” in: Proc. of the 4th Int. Conf. on Coating on Glass, Fraunhofer Inst. für Schicht und Oberflachentechnik, Braunschweig (2002), pp. 131–142.

    Google Scholar 

  5. T. Toccoli, A. Boschetti, and S. Iannotta, “Molecular materials for optoelectronics by supersonic molecular beam growth: co-deposition of C60 and ZnPc,” Synth. Mat., 122, 229–231 (2001).

    Article  Google Scholar 

  6. S. Iannotta, T. Toccoli, A. Boschetti, and P. Scardi, “Optical properties, morphology, and structure of high quality oligothiophene films grown by supersonic seeded beams,” Synth. Mat., 122, 221–223 (2001).

    Article  Google Scholar 

  7. R. Campargue, J. B. Anderson, J. B. Fenn, et al., On Aerodynamic Separation Methods, Repr. from: Nuclear Energy Maturity, Pergamon Press, Oxford-New York (1975), pp. 5–25.

    Google Scholar 

  8. R. J. Cattolica, R. J. Gallagher, L. Talbot, et al., “Research on aerodynamic means of isotope enrichment,” Report No. SAND78-8216, Sandia Lab. Energy, Albuquerque (1978).

  9. Yu. S. Kusner, S. S. Kutateladze, V. G. Prikhod’ko, et al., “Inertial gas-dynamic separation of gas mixtures and isotopes,” Dokl. Akad. Nauk SSSR, 247, No. 4, 845–848 (1979).

    Google Scholar 

  10. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Sci. Publ., Oxford (1994).

    Google Scholar 

  11. M. S. Ivanov and S. V. Rogazinskii, “Comparative analysis of algorithms of the direct simulation Monte Carlo method in rarefied gas dynamics,” Zh. Vychsl. Mat. Mat. Fiz., 23, No. 7, 1058–1070 (1988).

    MathSciNet  Google Scholar 

  12. V. P. Glushko (ed.), Thermodynamic Properties of Individual Substances [in Russian], Vol. 8, Izd. Akad. Nauk SSSR, Moscow (1974).

    Google Scholar 

  13. T. Shimanouchi, Table of Molecular Vibrational Frequencies, Vol. 1, Nat. Bureau of Standards, Washington (1972).

    Google Scholar 

  14. J. D. Lambert, Vibrational and Rotational Relaxation in Gases, Clarendon Press, Oxford (1977).

    Google Scholar 

  15. T. L. Cottrel and J. C. McCoubrey, Molecular Energy Transfer in Gases, Butterworths, London (1961).

    Google Scholar 

  16. B. L. Haas, D. B. Hash, G. A. Bird, et al., “Rates of thermal relaxation in direct simulation Monte Carlo methods,” Phys. Fluids, 6, No. 6, 2191–2201 (1994).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 142–151, May–June, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maltsev, R.V., Rebrov, A.K. Gas-dynamic colliders: Numerical simulations. J Appl Mech Tech Phys 48, 420–427 (2007). https://doi.org/10.1007/s10808-007-0052-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-007-0052-5

Key words

Navigation