Elastic silicon-film-based nanoshells: Formation, properties, and applications

  • V. Ya. Prinz
  • S. V. Golod
Article

Abstract

Controllable formation and properties of solid single-crystal micro-and nanoshells of various shapes (tubes and spirals, vertically positioned rings and cylinders, and bent and trough-shaped cantilevers) are briefly reviewed, and new results are given. The shells and complicated structures of prescribed size and shape are formed with the use of elastic energy of initial strained SiGe/Si films of nanometer thickness and methods of highly selective and directed detachment of the films from the silicon substrates. It is experimentally demonstrated that the diameters of the fabricated SiGe/Si nanotubes are several times smaller than the values predicted by the continuum elasticity theory. The properties of the shells made of semiconductor and hybrid (metal-semiconductor and metal-dielectric-semiconductor) films and their applications in micro-and nanoscale electrical engineering are discussed.

Key words

elastic stresses and strain thin films silicon nanotechnology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Mönch, Semiconductor Surfaces and Interfaces, Springer, Berlin (2001).MATHGoogle Scholar
  2. 2.
    V. Ya. Prinz, V. A. Seleznev, A. K. Gutakovsky, et al., “Free-standing and overgrowth InGaAs/GaAs nanotubes, nanohelicies and their arrays,” Physica E, 6, Nos. 1/4, 828–831 (2000).CrossRefADSGoogle Scholar
  3. 3.
    V. Ya. Prinz, V. A. Seleznev, and A. V. Chekhovskii, “Self-forming semiconductor micro-and nanotubes,” Mikrosistem. Tekh., No. 6, 29–34 (2003).Google Scholar
  4. 4.
    V. M. Osadchii and V. Ya. Prinz, “Detachment of charge carriers in rolled heterostructures,” Pis’ma Zh. Éksp. Teor. Fiz., 72, No. 6, 451–456 (2000).Google Scholar
  5. 5.
    A. B. Vorob’ev, V. Ya. Prinz, Yu. S. Yukecheva, and A. I. Toropov, “Magnetotransport properties of two-dimensional electron gas on cylindrical surface,” Physica E, 23, Nos. 1/2, 171–176 (2004).CrossRefADSGoogle Scholar
  6. 6.
    L. I. Magarill, A. V. Chaplik, and M. V. Éntin, “Spectrum and kinetics of electrons in curvilinear nanostructures,” Usp. Fiz. Nauk, 175, No. 9, 995–1000 (2005).Google Scholar
  7. 7.
    M. C. Roco, R. S. Williams, and P. Alivisatos, Nanotechnology Research Directions, Kluwer Acad. Publ., Boston (2000).Google Scholar
  8. 8.
    B. Brushan (ed.), Handbook of Nanotechnology, Springer-Verlag, Berlin (2004).Google Scholar
  9. 9.
    K. Goser, P. Glosekotter, and J. Dienstuhl, Nanoelectronics and Nanosystems. From Transistors to Molecular and Quantum Devices, Springer-Verlag, Berlin (2004).Google Scholar
  10. 10.
    S. V. Golod, V. Ya. Prinz, V. I. Mashanov, and A. K. Gutakovsky, “Fabrication of conducting GeSi/Si micro-and nanotubes and helical microcoils,” Semicond. Sci. Technol., 16, No. 3, 181–185 (2001).CrossRefADSGoogle Scholar
  11. 11.
    S. A. Campbell and H. J. Lewerenz (eds.), Semiconductor Micromachining, Vol. 2, John Wiley and Sons., Chichester (1998).Google Scholar
  12. 12.
    U. Schnakenberg, W. Benecke, and B. Lochel, “NH4OH based etchants for silicon micromachining,” Sensors Actuators, A21/A23, 1031–1035 (1990).CrossRefGoogle Scholar
  13. 13.
    F. Wang, Y. Shi, J. Liu, et al., “Highly selective chemical etching of Si vs. Si1−xGex using NH4OH solution,” J. Electrochem. Soc., 144, No. 3, L37–L39 (1997).CrossRefGoogle Scholar
  14. 14.
    Y. C. Tsui and T. W. Clyne, “An analytical model for predicting residual stresses in progressively deposited coatings. Pt 1. Planar geometry,” Thin Solid Films, 306, No. 1, 23–33 (1997).CrossRefGoogle Scholar
  15. 15.
    G. P. Nikishkov, “Curvature estimation for multilayer hinged structures with initial strains,” J. Appl. Phys., 94, No. 8, 5333–5336 (2003).CrossRefADSGoogle Scholar
  16. 16.
    E. A. Ivanova, A. M. Krivtsov, and N. F. Morozov, “Peculiarities of the bending-stiffness calculation for nanocrystals,” Doklady Physics, 47, No. 8, 620–622 (2002).CrossRefGoogle Scholar
  17. 17.
    A. V. Bolesta, I. F. Golovnev, and V. M. Fomin, “InGaAs/GaAs nanotubes simulation: Comparison between continual and molecular dynamics approaches,” Comp. Mater. Sci., 36, Nos. 1/2, 147–151 (2006).CrossRefGoogle Scholar
  18. 18.
    F. Liu, “Mechanical bending of nanoscale thin films: dominating role of atomic surface reconstruction and intrinsic surface stress,” in: Abstracts of the 15th U.S. Nat. Congress on Theor. and Appl. Mech., No. 693, Univ. of Colorado, Boulder (2006).Google Scholar
  19. 19.
    S. V. Golod, V. Ya. Prinz, and V. I. Mashanov, “Directional-rolling method for strained SiGe/Si films and its application to fabrication of hollow needles,” Thin Solid Films, 489, Nos. 1/2, 169–176 (2005).CrossRefGoogle Scholar
  20. 20.
    V. Ya. Prinz, D. Grützmacher, A. Beyer, et al., “A new technique for fabricating three-dimensional micro-and nanostructures of various shapes,” Nanotechnology, 12, No. 4, 399–402 (2001).CrossRefADSGoogle Scholar
  21. 21.
    D. Grützmacher, O. Kirfel, E. Deckhardt, et al., “Free-standing Si/SiGe micro-and nanotubes for microelectronics,” in: S. Luryi, J. Xu, and A. Zaslavsky (eds.), Future Trends in Microelectronics: The Nano, the Giga, and the Ultra, John Wiley and Sons-IEEE Press Publ., New York (2004), pp. 235–242.Google Scholar
  22. 22.
    D. Hisamoto, W. C. Lee, J. Kedzierski, et al., “FinFET — a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, 47, No. 12, 2320–2325 (2000).CrossRefGoogle Scholar
  23. 23.
    L. Zhang, S. V. Golod, E. Deckardt, et al., “Free-standing Si/SiGe micro-and nano-objects,” Physica E, 23, Nos. 3/4, 280–284 (2004).CrossRefADSGoogle Scholar
  24. 24.
    R. J. Hamers, “Flexible electronic futures,” Nature, 412, 489 (2001).CrossRefADSGoogle Scholar
  25. 25.
    A. Sazonov, M. Meitine, D. Stryakhilev, and A. Nathan, “Low-temperature materials and thin-film transistors for electronics on flexible substrates,” Semiconductors, 40, No. 8, 959–967 (2006).CrossRefGoogle Scholar
  26. 26.
    S. V. Golod, D. Grützmacher, C. David, et al., “Fabrication of SiGe/Si/Cr bent cantilevers based on self-rolling of epitaxial films,” Microelectron. Eng., 67/68, 595–601 (2003).CrossRefGoogle Scholar
  27. 27.
    S. V. Golod, V. Ya. Prinz, P. Wagli, et al., “Free-standing SiGe/Si/Cr and SiGe/Si/SixNy/Cr microtubes,” Appl. Phys. Lett., 84, No. 17, 3391–3393 (2004).CrossRefADSGoogle Scholar
  28. 28.
    J. Chen, J. Zou, C. Liu, et al., “Design and modeling of a micromachined high-Q tunable capacitor with large tuning range and a vertical planar spiral inductor,” IEEE Trans. Electron Devices, 50, No. 3, 730–739 (2003).CrossRefGoogle Scholar
  29. 29.
    Yu. V. Nastaushev, V. Ya. Prinz, and S. N. Svitasheva, “A technique for fabricating Au/Ti micro-and nanotubes,” Nanotechnology, 16, No. 6, 908–912 (2005).CrossRefADSGoogle Scholar
  30. 30.
    V. M. Fomin, A. N. Shiplyuk, V. M. Aniskin, et al., “Hot-tube probes of thermal anemometers with high spatial and temporal resolution,” Doklady Physics, 51, No. 3, 132–135 (2006).CrossRefGoogle Scholar
  31. 31.
    A. N. Shiplyuk, V. A. Seleznev, and V. M. Aniskin, “Hot-wire probe,” Patent of the Russian Federation, No. 2207576 RF, G 01 P 5/12, Publ. 06.27.2003.Google Scholar
  32. 32.
    A. Bachtold, M. Henny, C. Terrier, et al., “Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements,” Appl. Phys. Lett., 73, No. 2, 274–276 (1998).CrossRefADSGoogle Scholar
  33. 33.
    A. Cho, “Pretty as you please, curling films turn themselves into nanodevices,” Science, 313, No. 5784, 164–165 (2006).CrossRefGoogle Scholar
  34. 34.
    L. Zhang, E. Deckhardt, A. Weber, et al., “Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nanotechnology, 16, No. 6, 655–663 (2005).CrossRefADSGoogle Scholar
  35. 35.
    L. Zhang, L. X. Dong, D. J. Bell, et al., “Fabrication and characterization of free-standing Si/Cr micro-and nanospirals,” Microelectron. Eng., 83, Nos. 4/9, 1237–1240 (2006).CrossRefGoogle Scholar
  36. 36.
    L. Zhang, E. Ruh, D. Grutzmacher, et al., “Anomalous coiling of SiGe/Si and SiGe/Si/Cr helical nanobelts,” Nano Lett., 6, No. 7, 1311–1317 (2006).CrossRefGoogle Scholar
  37. 37.
    T. Tokuda, Y. Sakano, D. Mori, et al., “Fabrication and current-drive of SiGe/Si ‘Micro-origami’ epitaxial MEMS device on SOI substrate,” Electron. Lett., 40, No. 21, 1333–1334 (2004).CrossRefGoogle Scholar
  38. 38.
    R. Songmuang, N. Y. Jin-Phillipp, S. Mendach, and O. G. Schmidt, “Single rolled-up SiGe/Si microtubes: Structure and thermal stability,” Appl. Phys. Lett., 88, No. 2, 021913-1–021913-3 (2006).Google Scholar
  39. 39.
    M. H. Huang, C. Boone, M. Roberts, et al., “Nanomechanical architecture of strained bilayer thin films: From design principles to experimental fabrication,” Advanced Mater., 17, No. 23, 2860–2864 (2005).CrossRefGoogle Scholar
  40. 40.
    H. C. Chen, K. F. Liao, S. W. Lee, and L. J. Chen, “Self-forming silicide/SiGe-based tube structure on Si(001) substrates,” Thin Solid Films, 469, 483–486 (2004).CrossRefGoogle Scholar
  41. 41.
    A. V. Prinz, V. Ya. Prinz, and V. A. Seleznev, “Microneedle in the integral version and methods for its fabrication,” Parent of the Russian Federation, No. 2179458 RF, 7 A 61 M 5/32, Publ. 02.20.2002.Google Scholar
  42. 42.
    A. V. Prinz and V. Ya. Prinz, “Application of semiconductor micro-and nanotubes in biology,” Surf. Sci., 532, 911–915 (2003).CrossRefGoogle Scholar
  43. 43.
    A. V. Prinz, V. Ya. Prinz, and V. A. Seleznev, “Semiconductor micro-and nanoneedles for microinjections and ink-jet printing,” Microelectron. Eng., 67/68, 782–788 (2003).CrossRefGoogle Scholar
  44. 44.
    V. Ya. Prinz, V. A. Seleznev, A. K. Gutakovsky, et al., “Rolled InAs/GaAs/Ta2O5 heterofilms containing InAs quantum dots,” in: Nanostructures: Physics and Technology: Proc. of the 11th Int. Symp., S. n., St. Petersburg (2003), p. 327.Google Scholar
  45. 45.
    T. Kipp, H. Welsch, C. Strelow, et al., “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett., 96, No. 7, Art. 077403 (2006).Google Scholar
  46. 46.
    S. Mendach, R. Songmuang, S. Kiravittaya, et al., “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett., 88, No. 11, Art. 111120 (2006).Google Scholar
  47. 47.
    C. Deneke, N. Y. Jin-Phillipp, I. Loa, and O. G. Schmidt, “Radial superlattices and single nanoreactors,” Appl. Phys. Lett., 84, No. 22, 4475–4477 (2004).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. Ya. Prinz
    • 1
  • S. V. Golod
    • 1
  1. 1.Institute of Semiconductor Physics, Siberian DivisionRussian Academy of SciencesNovosibirsk

Personalised recommendations