Skip to main content
Log in

Prediction of fracture in the vicinity of friction surfaces in metal forming processes

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

It is shown that the use of a fracture criterion containing a characteristic length of the flow region makes it possible to further develop the theory of fracture in the vicinity of the maximum friction surfaces in metal-forming processes, with allowance for an infinite equivalent strain rate arising near such surfaces. A model of perfectly plastic rigid solids is considered in formulating the criterion. It is noted that the approach can be extended to more complicated models of plastic solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Gubkin, Plastic Deformation of Metals [in Russian], Vol. 3, Metallurgizdat, Moscow (1961).

    Google Scholar 

  2. Y.-T. Kim and K. Ikeda, “Flow behavior of the billet surface layer in porthole die extrusion of aluminium,” Metallurg. Mater. Trans., 31A, No. 6, 1635–1643 (2000).

    Google Scholar 

  3. T. Aukrust and S. LaZghab, “Thin shear boundary layers in flow of hot aluminium,” Int. J. Plast., 16, No. 1, 59–71 (2000).

    Article  Google Scholar 

  4. S. Alexandrov and O. Richmond, “Singular plastic flow fields near surfaces of maximum friction stress,” Int. J. Non-Linear Mech., 36, No. 1, 1–11 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. E. Alexandrov, R. V. Goldshtein, and E. A. Lyamina, “Developing the Concept of the Strain Rate Intensity Factor in Plasticity Theory,” Dokl. Ross. Akad. Nauk, 389, No. 2, 180–183 (2003).

    Google Scholar 

  6. V. L. Kolmogorov, Plasticity and Fracture [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  7. A. G. Atkins, “Fracture in forming,” J. Mater. Process. Technol., 56, 609–618 (1996).

    Article  Google Scholar 

  8. M. A. Shabara, A. A. El-Domiaty, and M. A. Kandil, “Validity assessment of ductile fracture criteria in cold forming,” J. Mater. Eng. Perform., 5, 478–488 (1996).

    Google Scholar 

  9. D. M. Norris, J. E. Reaugh, B. Moran, and D. F. Quinones, “A plastic-strain, mean-stress criterion for ductile fracture,” Trans. ASME, J. Eng. Mater. Technol., 100, No. 3, 279–286 (1978).

    Google Scholar 

  10. R. T. Shield, “Plastic flow in a converging conical channel,” J. Phys. Mech. Solids, 3, No. 4, 246–258 (1955).

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Cristescu, “Plastic flow through conical converging dies, using a viscoplastic constitutive equation,” Int. J. Mech. Sci., 17, 425–433 (1975).

    Article  MATH  Google Scholar 

  12. D. Durban and M. E. Mear, “Asymptotic solution for extrusion of sintered powder metals,” Trans. ASME, J. Appl. Mech., 58, No. 2, 582–584 (1991).

    Article  Google Scholar 

  13. V. V. Sokolovskii, “Plane and axisymmetric equilibrium of a plastic mass between rigid walls,” Prikl. Mat. Mekh., 14, 75–92 (1950).

    MATH  MathSciNet  Google Scholar 

  14. S. E. Alexandrov, D. Vilotich, R. V. Gold’stein, and N. N. Chikanova, “On determining the workability diagram,” Izv. Ross. Akad. Nauk, Mekh. Terdv. Tela, No. 4, 141–149 (1999).

  15. J. G. Sevillano, P. van Houtte, and E. Aernoudt, “Large strain work hardening and textures, ” Prog. Mater. Sci., 25, No. 1, 69–112 (1981).

    Google Scholar 

  16. S. Alexandrov and O. Richmond, “Frictional effects in the modified Couette flow of solids,” in: Proc. of the 8th Int. Conf. on Metal Forming (Cracow, Poland, September 3–7, 2000), Balkema, Rotterdam (2000), pp. 723–728.

  17. I. F. Collins and S. A. Meguid, “On the influence of hardening and anisotropy on the plane-strain compression of thin metal strip,” Trans. ASME, J. Appl. Mech., 44, No. 2, 271–278 (1977).

    MATH  Google Scholar 

  18. L. Tashman, E. Masad, D. Little, and H. Zbib, “A microstructure-based viscoplastic model for asphalt concrete,” Int. J. Plasticity, 21, No. 9, 1659–1685 (2005).

    Article  MATH  Google Scholar 

  19. O. M. Smirnov, Metal Working in a Superplasticity State [in Russian], Mashinostroenie, Moscow (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 169–174, September–October, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, S.E., Lyamina, E.A. Prediction of fracture in the vicinity of friction surfaces in metal forming processes. J Appl Mech Tech Phys 47, 757–761 (2006). https://doi.org/10.1007/s10808-006-0112-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-006-0112-2

Key words

Navigation