Biodiversity? Yes, But What Kind? A Critical Reassessment in Light of a Challenge from Microbial Ecology

  • Nicolae MorarEmail author


Biodiversity has become one of the most important conservation values that drive our ecological management and directly inform our environmental policy. This paper highlights the dangers of strategically appropriating concepts from ecological sciences and also of uncritically inserting them into conservation debates as unqualified normative landmarks. Here, I marshal evidence from a cutting-edge research program in microbial ecology, which shows that if species richness is our major normative target, then we are faced with extraordinary ethical implications. This example challenges our well-received beliefs about biodiversity and it invites us to critically rethink the nature of this concept so that a more robust understanding of biodiversity and of its role in conservation policy could emerge.


Biodiversity Microbial ecology Conservation value 



I would like to thank B. Bohannan, T. Toadvine, and J. Beever for thoughtful and encouraging comments on early drafts of this manuscript.


  1. Aoki, I. (2003). Diversity-productivity-stability relationship in freshwater ecosystems: Whole-systemic view of all trophic levels. Ecological Research, 18, 397–404.CrossRefGoogle Scholar
  2. Bassler, B. (2012). Microbes as menaces, mates & marvels. Daedalus, 141(3), 67–76.CrossRefGoogle Scholar
  3. Beever, J., & Morar, N. (2017). Interconnectedness and interdependence: Challenges for public health ethics. American Journal of Bioethics, 17(9), 19–21.CrossRefGoogle Scholar
  4. Bohannan, B. (2012). Google this: The story of science, In: Cascade, Spring 2011. Available at Accessed 19 May 2018.
  5. Bond, E. M., & Chase, J. M. (2002). Biodiversity and Ecosystem functioning at local and regional spatial scales. Ecological Letters, 5, 467–470CrossRefGoogle Scholar
  6. Brown, & Sax, (2004). An essay on some topics concerning invasive species. Austral Ecology, 29, 530–536.CrossRefGoogle Scholar
  7. Burch-Brown, J., & Archer, A. (2017). In defense of biodiversity. Biology and Philosophy, 32, 969–997.CrossRefGoogle Scholar
  8. Callicott, J. B. (1997). Values and ethics in conservation. In G. K. Meffee & C. R. Caroll (Eds.), Principles of conservation biology (pp. 29–56). Sunderland: Sinauer.Google Scholar
  9. Callicott, J. B., Crowder, L. B., & Mumford, K. (1999). Current normative concepts in conservation. Conservation Biology, 13, 22–35.CrossRefGoogle Scholar
  10. Cardinale, B. J., Ives, A. R., & Inchausti, P. (2004). Effects of species diversity on the primary productivity of ecosystems: extending our spatial and temporal scales of inference. Oikos, 104, 437–450.CrossRefGoogle Scholar
  11. Cardinale, B. J., et al. (2011). The functional role of producer diversity in ecosystems. American Journal of Botany, 98(3), 572–592CrossRefGoogle Scholar
  12. Cardinale, B., et al. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67.CrossRefGoogle Scholar
  13. Caumette, P., et al. (2015). Some historical elements of microbial ecology. In J.-C. Bertrand, et al. (Eds.), Environmental microbiology: Fundamentals and applications: Microbial ecology (pp. 9–24). New York: Springer.Google Scholar
  14. Claridge, M. F., Dawah, H. A., & Wilson, M. R. (Eds.). (1997). Species: The units of biodiversity. London: Chapman Hall Ltd.Google Scholar
  15. Colyvan, M., Linquist, S., Grey, W., Griffiths, P., Odenbaugh, J., & Possingham, H. P. (2009). Philosophical issues in ecology: Recent trends and future directions. Ecology and Society, 14(2), 22.CrossRefGoogle Scholar
  16. DeLong, D. (1996). Defining biodiversity. Wildlife Society Bulletin, 24, 738–749.Google Scholar
  17. Dirzo, R., & Raven, P. H. (2003). Global state of biodiversity and loss. Annual Review of Environment and Resources, 28, 137–167.CrossRefGoogle Scholar
  18. Dykhuizen, D. (1998). Santa Rosalia: Why are there so many species of bacteria? Antonie van Leeuwenhoek, 73(1), 25–33.CrossRefGoogle Scholar
  19. Einstein, A. (1971). 1916 Obituary for Mach. In Born (Ed.), The born-Einstein letters (p. 159). New York: Macmillan.Google Scholar
  20. Ereshefsky, M. (2009). Defining health and disease. Studies in History and Philosophy of Biological and Biomedical Sciences, 40, 221–227.CrossRefGoogle Scholar
  21. Forest, F., Grenyer, R., Rouget, M., Davies, T. J., Cowling, R. M., Faith, D. P., et al. (2007). Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757–760.CrossRefGoogle Scholar
  22. Gaston, K. J. (Ed.). (1996). Biodiversity: A biology of numbers and difference. Oxford: Blackwell.Google Scholar
  23. Gaston, Kevin, & Spicer, John. (2004). Biodiversity: An introduction. New York: Blackwell.Google Scholar
  24. Gibson, D., et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52–56.CrossRefGoogle Scholar
  25. Gonzalez, A., et al. (2016). Estimating local biodiversity change: a critique of papers claming no net loss of local diversity, Ecology, 97(8), 1949–1960.CrossRefGoogle Scholar
  26. Hettinger, N., & Throop, B. (2008). Refocusing ecocentrism. In L. Pojman & P. Pojman (Eds.), Environmental ethics (pp. 186–200). New York: Wadsworth.Google Scholar
  27. Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. American Scientist, 163(2), 192–211.Google Scholar
  28. Huston, M. A. (1997). Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449–460.CrossRefGoogle Scholar
  29. Huston, M. A., et al. (2000). No consistent effect of plant diversity on productivity. Science, 289(5483), 1255.CrossRefGoogle Scholar
  30. Jamieson, Dale. (1995). Ecosystem health: Some preventive medicine. Environmental Values, 4(4), 333–344.CrossRefGoogle Scholar
  31. Jesus E. D., et al. (2009). Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal 3(9), 1004–1011.CrossRefGoogle Scholar
  32. Justus, J., & Sarkar, S. (2002). The principle of complementarity in the design of reserve networks to conserve biodiversity: a preliminary history, Journal of Biosciences, 27(4), 421–435.CrossRefGoogle Scholar
  33. Koricheva, Julia, & Siipi, Helena. (2004). The phenomenon of biodiversity. In Marrku Oksanen & Juhani Pietarinen (Eds.), Philosophy and biodiversity (pp. 27–53). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Lakatos, Imre. (2013). Science and pseudoscience. In M. Curd, J. Cover, & C. Pincock (Eds.), Philosophy of science (pp. 20–26). New York: Norton.Google Scholar
  35. Lennox, J. (1995). Health as an objective value. Journal of Medicine and Philosophy, 20, 499–511.CrossRefGoogle Scholar
  36. Lovejoy, T. (2002). Biodiversity: Dismissing scientific process. Scientific American, 268(1), 69–71.Google Scholar
  37. MacArthur, R. H. (1972). Geographical ecology. New York: Harper and Row.Google Scholar
  38. Maclaurin, J., & Sterelny, K. (2008). What is biodiversity?. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  39. Madsen, E. L. (2011). Microorganisms and their roles in fundamental biogeochemical cycles. Current Opinion in Biotechnology, 22, 456–464.CrossRefGoogle Scholar
  40. Maier, Donald. (2012). What’s so good about biodiversity?. New York: Springer.CrossRefGoogle Scholar
  41. Malaterre, C. (2013). Microbial diversity and the “lower-limit” problem of biodiversity. Biology and Philosophy, 28(2), 219–239.CrossRefGoogle Scholar
  42. Malhi, Y., et. al. (2008). Climate Change, Deforestation, and the Fate of the Amazon. Science, 319(5860), 169–172.CrossRefGoogle Scholar
  43. Margules, C., & Sarkar, S. (2007). Systematic conservation planning. Cambridge: Cambridge University Press.Google Scholar
  44. Mittelbach, G. (2012). Community ecology. Oxford: Oxford University Press.Google Scholar
  45. Mora, C., et al. (2011). How many species are there on earth and in the ocean? PLOS. Scholar
  46. Morar, N., Toadvine, T., & Bohannan, B. (2015). Biodiversity at twenty-five years: Revolution Or red herring? Ethics, Policy, and Environment, 18(1), 16–29.CrossRefGoogle Scholar
  47. Morgan, Gregory. (2010). Evaluating Maclaurin and Sterelny’s conception of biodiversity in cases of frequent, promiscuous lateral gene transfer. Biology and Philosophy, 25(4), 603–621.CrossRefGoogle Scholar
  48. Naeem, S., & Li, S. (1997). Biodiversity enhances ecosystem reliability. Nature, 390, 507–509.CrossRefGoogle Scholar
  49. Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H., & Woodfin, R. M. (1994). Declining biodiversity can alter the performance of ecosystems. Nature, 368, 734–737.CrossRefGoogle Scholar
  50. Nelson, James. (1995). Health and disease as thick concepts in ecosystemic contexts. Environmental Values, 4(4), 311–322.CrossRefGoogle Scholar
  51. Nguyen, H., et al. (2012). Biodiversity–productivity relationships in small-scale mixed-species plantations using native species in Leyte province, Philippines. Forest Ecology and Management, 274, 81–90.CrossRefGoogle Scholar
  52. Norton, B. G. (1988). Commodity amenity and morality: The limits of quantification in valuing biodiversity. In E. O. Wilson (Ed.), Biodiversity. Washington, DC: National Academy Press.Google Scholar
  53. Norton, B. G. (1995). Objectivity, intrinsicality, and sustainability. Environmental Values, 4(4), 323–332.CrossRefGoogle Scholar
  54. Norton, B. G. (2008). Biodiversity: Its meaning and value. In S. Sarkar & A. Plutynski (Eds.), A companion to the philosophy of biology. New York: Blackwell.Google Scholar
  55. Petersen, I., Meyer, K., & Bohannan, B. (2019). Consistent bacterial responses to land use change across the tropics. bioRxiv. Scholar
  56. Pimm, S., & Raven, P. (2000). Extinction by numbers. Nature, 483, 843–845.CrossRefGoogle Scholar
  57. Randall, A. (1986). Human preferences, economics, and the preservation of species. In B. G. Norton (Ed.), The preservation of species: The value of biological diversity. Princeton: Princeton University Press.Google Scholar
  58. Reice, Seth. (1994). Nonequilibrium, determinants of biological community structure. American Scientist, 82, 424–435.Google Scholar
  59. Ricotta, C. (2005). Through the jungle of biological diversity. Acta Biotheoretica, 53(1), 29–38.CrossRefGoogle Scholar
  60. Rodrigues, Jorge L. M., et al. (2013). Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Science, 110(3), 988–993.CrossRefGoogle Scholar
  61. Rolston, H. (2001). Biodiversity. In Dale Jamieson (Ed.), A companion to environmental philosophy (pp. 402–415). Oxford: Blackwell.CrossRefGoogle Scholar
  62. Santana, C. (2014). Save the planet: Eliminate biodiversity. Biology and Philosophy, 29, 761–780.CrossRefGoogle Scholar
  63. Sarkar, Sahotra. (2002). Defining biodiversity; assessing biodiversity. The Monist, 85(1), 131–155.CrossRefGoogle Scholar
  64. Sarkar, Sahotra. (2005). Biodiversity and environmental philosophy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Sarkar, Sahotra. (2006). Ecological diversity and biodiversity as concepts for conservation planning: Comments on Ricotta. Acta Biotheoretica, 54(2), 133–140.CrossRefGoogle Scholar
  66. Sarkar, Sahotra. (2007). From ecological diversity to biodiversity. In M. Ruse & D. Hull (Eds.), The Cambridge companion to biodiversity. Cambridge: Cambridge University Press.Google Scholar
  67. Sarkar, S., & Margules, C. (2002). Operationalizing biodiversity for conservation planning. Journal of Biosciences, 27, 299–308.CrossRefGoogle Scholar
  68. Sax, D., & Gaines, S. (2008). Species invasion and extinction: The future of native biodiversity on island. Proceedings of the National Academy of Science, 105(1), 11490–11497.CrossRefGoogle Scholar
  69. Scheffer, M., et al. (2018). Toward a unifying theory of biodiversity. PNAS, 115(4), 639–641.CrossRefGoogle Scholar
  70. Shavit, A., & Griesemer, J. (2009). There and back again, or the problem of locality in biodiversity surveys. Philosophy of Science, 76(3), 273–294.CrossRefGoogle Scholar
  71. Shrader-Frechette, K. (1996). Individualism, holism, and environmental ethics. Ethics & The Environment, 1(1), 55–69.Google Scholar
  72. Shrader-Frechette, K. S., & McCoy, E. D. (1993). Method in ecology. New York: Cambridge University Press.CrossRefGoogle Scholar
  73. Singh, B., et al. (2010). Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 8, 779–790.CrossRefGoogle Scholar
  74. Soares-Filho, B. S., et al. (2006). Modelling conservation in the Amazon basin. Nature, 440, 520–523.CrossRefGoogle Scholar
  75. Srivastava, Diane, & Vellend, Mark. (2005). Biodiversity-ecosystem function research: Is it relevant to conservation? Annual Review of Ecology Evolution and Systematics, 36, 267–294.CrossRefGoogle Scholar
  76. Staley, J. T., & Reysenbach, A.-L. (2001). Biodiversity of microbial life: Foundation of earth’s biosphere. New York: Wiley.Google Scholar
  77. Takacs, D. (1996). The idea of biodiversity: Philosophies of paradise. Baltimore: The Johns Hopkins University Press.Google Scholar
  78. Tangley, L. (1986). Biological diversity goes public. Biosciences, 36(11), 708–715.CrossRefGoogle Scholar
  79. Tilman, D. (1996). Biodiversity: Population versus ecosystem stability. Ecology, 77, 350–363.CrossRefGoogle Scholar
  80. Tilman, D., Knops, J., Wedin, D., & Reich, P. (2002). Plant diversity and composition: Effects on productivity and nutrient dynamics of experimental grasslands. In M. Loreau, S. Naeem, & P. Inchausti (Eds.), Biodiversity and ecosystem functioning: Synthesis and perspectives (pp. 21–35). Oxford: Oxford University Press.Google Scholar
  81. Tilman, D., Wedin, D., & Knops, J. (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718–720.CrossRefGoogle Scholar
  82. U.S. Congress. (1987). Technologies to maintain biological diversity. Philadelphia: Office of Technology Assessment.Google Scholar
  83. Van Der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.CrossRefGoogle Scholar
  84. Vellend, M. (2017). The biodiversity conservation paradox. American Scientist, 105, 94–101.CrossRefGoogle Scholar
  85. Vellend, M., et al. (2013). Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences, 110, 19456–19459.CrossRefGoogle Scholar
  86. Wilson, E. O., & Peter, F. M. (Eds.). (1988). BioDiversity. Washington, DC: National Academy Press.Google Scholar
  87. Wislon, E. O. (2002). What is nature worth? (pp. 20–40). Winter: The Wilson Quarterly.Google Scholar
  88. Woese, C. (1998). A manifesto for microbial genomics. Current Biology, 8(22), 781–783.CrossRefGoogle Scholar
  89. Woese, C., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 4(11):5088-5090.CrossRefGoogle Scholar
  90. Zimmer, Carl. (2008). Friendly invaders. New York: The New York Times.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.The Environmental Studies Program and the Department of PhilosophyUniversity of OregonEugeneUSA

Personalised recommendations