Fish Cognition and Consciousness

  • Colin AllenEmail author


Questions about fish consciousness and cognition are receiving increasing attention. In this paper, I explain why one must be careful to avoid drawing conclusions too hastily about this hugely diverse set of species.


Fish Learning Cognition Consciousness 



I am grateful for comments to audiences at the University of Utrecht, the Ruhr University, Bochum, and at the Leibniz Institute for Inland Fisheries and Freshwater Ecology in Berlin, and for comments on the manuscript by Michael Trestman, Bernice Bovenkerk, members of the “Spackled” group at Indiana University, and two anonymous referees for the journal. I also gratefully acknowledge the support of the Alexander von Humboldt Foundation and Indiana University during the time that this paper was prepared, and the hospitality of the Ruhr University-Bochum during my sabbatical year.


  1. Allen, C. (2004). Animal Pain. Noûs, 38, 617–643.CrossRefGoogle Scholar
  2. Allen, C. (2006). Ethics and the science of animal minds. Theoretical Medicine and Bioethics, 27, 375–394.CrossRefGoogle Scholar
  3. Allen, C. (2010). Animal consciousness. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2010 Edition). Accessed May 13, 2011.
  4. Allen, C. (forthcoming). Private codes and public structures. In D. McFarland, K. Stenning, & M. McGonigle-Chalmers (Eds.), The complex mind: An interdisciplinary approach. London: Palgrave-Macmillan.Google Scholar
  5. Allen, C., Fuchs, P. N., Shriver, A., & Wilson, H. (2005) Deciphering animal pain. In M. Aydede (Ed.), Pain: New essays on the nature of pain and the methodology of its study (pp. 352–366). Cambridge: MIT Press.Google Scholar
  6. Allen, C., Grau, J. W., & Meagher, M. W. (2009) The lower bounds of cognition: What do spinal cords reveal? In J. Bickle (Ed.), The Oxford handbook of philosophy of neuroscience (pp. 129–142). Oxford: Oxford University Press.Google Scholar
  7. Arai, T., Tominaga, O., Seikai, T., & Masuda, R. (2007). Observational learning improves predator avoidance in hatchery-reared Japanese flounder Paralichthys olivaceus juveniles. Journal of Sea Research, 58, 59–64.CrossRefGoogle Scholar
  8. Baars, B. J. (1997). In the theatre of consciousness: Global workspace theory, a rigorous scientific theory of consciousness. Journal of Consciousness Studies, 4, 292–309.Google Scholar
  9. Babb, S. J., & Crystal, J. D. (2006). Episodic-like memory in the rat. Current Biology, 16, 1317–1321.CrossRefGoogle Scholar
  10. Bering, J. M., & Bjorklund, D. F. (2005). The serpent’s gift: Evolutionary psychology and consciousness. In P. D. Zelazo, M. Moscovitch, & E. Thompson (Eds.), Cambridge handbook of consciousness. New York: Cambridge University Press.Google Scholar
  11. Bitterman, M. E. (1975). The comparative analysis of learning: Are the laws of learning the same in all animals? Science, 188, 699–709.CrossRefGoogle Scholar
  12. Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 18, 227–247.CrossRefGoogle Scholar
  13. Block, N. (2005). Two neural correlates of consciousness. Trends in Cognitive Sciences, 9, 41–89.CrossRefGoogle Scholar
  14. Braithwaite, V. (2010). Do fish feel pain?. Oxford: Oxford University Press.Google Scholar
  15. Brown, C., & Laland, K. N. (2003). Social learning in fishes: a review. Fish and Fisheries, 4, 280–288.CrossRefGoogle Scholar
  16. Bshary, R., Hohner, A., Ait-el-Djoudi, K., & Fricke. H., (2006). Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biology, 4(12), e431. doi: 10.1371/journal.pbio.0040431.
  17. Cabanac, M., Cabanac, A. J., & Parent, A. (2009). The emergence of consciousness in phylogeny. Behavioral Brain Research, 198, 267–272.CrossRefGoogle Scholar
  18. Cabanac, M., & Laberge, F. (1998). Fever in goldfish is induced by pyrogens but not by handling. Physiology & Behavior, 63, 377–379.CrossRefGoogle Scholar
  19. Cai, D. J., Shuman, T., Harrison, E. M., Sage, J. R., & Anagnostaras, S. G. (2009). Sleep deprivation and Pavlovian fear conditioning. Learning and Memory, 16, 595–599.CrossRefGoogle Scholar
  20. Carruthers, P. (2000). Phenomenal consciousness: A naturalistic theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  21. Clark, R. E., & Squire, L. R. (1998). Classical conditioning and brain systems: The role of awareness. Science, 280, 77–81.CrossRefGoogle Scholar
  22. Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274.CrossRefGoogle Scholar
  23. Clayton, N. S., Emery, N., & Dickinson, A. (2006). The rationality of animal memory: Complex caching strategies of western scrub jays. In S. Hurley & M. Nudds (eds.) Rational animals? Oxford: Oxford University Press.Google Scholar
  24. Dadda, M., Piffer, L., Agrillo, C., & Bisazza, A. (2009). Spontaneous number representation in mosquitofish. Cognition, 112, 343–348.CrossRefGoogle Scholar
  25. Desjardins, J. K., & Fernald, R. D. (2010). What do fish make of mirror images? Biology Letters, 6, 744–747.CrossRefGoogle Scholar
  26. Eichenbaum, H., Sauvage, M., Fortin, N., Robitsek, R. J., & Komorovski, R. (2012). A comparative analysis of episodic memory. In T. R. Zentall & E. A. Wasserman (Eds.), The Oxford handbook of comparative psychology. Oxford: Oxford University Press (in press).Google Scholar
  27. Graves, L. A., Heller, E. A., Pack, A. I., & Abel, T. (2003). Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learning and Memory, 10, 168–176.CrossRefGoogle Scholar
  28. Kirsch, I., Lynn, S. J., Vigorito, M., & Miller, R. R. (2004). The role of cognition in classical and operant conditioning. Journal of Clinical Psychology, 60, 369–392.CrossRefGoogle Scholar
  29. Kotrschal, A., & Taborsky, B. (2010). Environmental change enhances cognitive abilities in fish. PLoS Biology, 8(4), e1000351. doi: 10.1371/journal.pbio.1000351.
  30. Kuba, M. J., Byrne, R. A., & Burghardt, G. M. (2010). A new method for studying problem solving and tool use in stingrays (Potamotrygon castexi). Animal Cognition, 13, 507–513.CrossRefGoogle Scholar
  31. Masseck, O. A., & Hoffmann, K.-P. (2008). Responses to moving visual stimuli in pretectal neurons of the small-spotted dogfish (Scyliorhinus canicula). Journal of Neurophysiology, 99, 200–207.CrossRefGoogle Scholar
  32. Merker, B. (2007). Consciousness without a cerebral cortex: A challenge for neuroscience and medicine. Behavioral and Brain Sciences, 30, 63–81.Google Scholar
  33. Nagel, T. (1974). What is it like to be a bat? Philosophical Review, 83, 435–450.CrossRefGoogle Scholar
  34. Nicolau, M. C., Akaârira, M., Gamundía, A., González, J., & Rial, R. V. (2000). Why we sleep: The evolutionary pathway to the mammalian sleep. Progress in Neurobiology, 62, 379–406.CrossRefGoogle Scholar
  35. Nilsson, J., Kristiansen, T. S., Fosseidengen, J. E., Fernö, A., & van den Bos, R. (2008). Learning in cod (Gadus morhua): Long trace interval retention. Animal Cognition, 11, 215–222.CrossRefGoogle Scholar
  36. Nilsson, J., Kristiansen, T. S., Fosseidengen, J. E., Stien, L. H., Fernö, A., & van den Bos, R. (2010). Learning and anticipatory behaviour in a “sit-and-wait” predator: The Atlantic halibut. Behavioral Processes, 83, 257–266.CrossRefGoogle Scholar
  37. Nordgreen, J., Joseph, P., Garner, J. P., Janczak, A. M., Ranheim, B., Muir, W. M., et al. (2009). Thermonociception in fish: Effects of two different doses of morphine on thermal threshold and post-test behaviour in goldfish (Carassius auratus). Applied Animal Behaviour Science, 119, 101–107.CrossRefGoogle Scholar
  38. Nordgreen, J., Janczak, A. M., Hovland, A. L., Ranheim, B., & Horsberg, T. E. (2010). Trace classical conditioning in rainbow trout (Oncorhynchus mykiss): What do they learn? Animal Cognition, 13, 303–309.CrossRefGoogle Scholar
  39. Oates, J., Manica, A., & Bshary, R. (2010). The shadow of the future affects cooperation in a cleaner fish. Current Biology, 20, R472–R473.CrossRefGoogle Scholar
  40. Rose, J. (2002). The neurobehavioral nature of fishes and the question of awareness and pain. Reviews in Fisheries Science, 10, 1–38.CrossRefGoogle Scholar
  41. Schuster, S., Wöhl, S., Griebsch, M., & Klostermeier, I. (2006). Animal cognition: How Archer Fish learn to down rapidly moving targets. Current Biology, 16, 378–383.CrossRefGoogle Scholar
  42. Skinner, B. F. (1984). The evolution of behavior. Journal of the Experimental Analysis of Behavior, 41, 217–221.CrossRefGoogle Scholar
  43. Sneddon, L. U., Braithwaite, V. A., & Gentle, M. J. (2003). Do fish have nociceptors: Evidence for the evolution of a vertebrate sensory system. Proceedings of the Royal Society, 270, 1115–1121.CrossRefGoogle Scholar
  44. Stotz, K., & Allen, C. (2011). From cell-surface receptors to higher learning: A whole world of experience. In K. S. Plaisance & T. A. C. Reydon (Eds.), The philosophy of behavioral biology (pp. 85–123). Berlin: Springer.Google Scholar
  45. Tennant, W. A., & Bitterman, M. E. (1975). Blocking and overshadowing in two species of fish. Journal of Experimental Psychology: Animal Behavior Processes, 1, 22–29.CrossRefGoogle Scholar
  46. Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of the hippocampus. Hippocampus, 8, 198–204.CrossRefGoogle Scholar
  47. Vargas, J. P., López, J. C., & Portavella, M. (2009). What are the functions of fish brain pallium? Brain Research Bulletin, 79, 436–440.CrossRefGoogle Scholar
  48. Varner, G. L. (2011) Review of Victoria Braithwaite, Do Fish Feel Pain? (Oxford University Press, 2010). Environmental Ethics, 33, 219–222.Google Scholar
  49. Whiteman, E. A., & Côte, I. M. (2004). Monogamy in marine fishes. Biological Reviews, 79, 351–375.CrossRefGoogle Scholar
  50. Yokogawa, T., Marin, W., Faraco, J., Pézeron, G., Appelbaum, L., Zhang, J., et al. (2007). Characterization of sleep in Zebrafish and Insomnia in hypocretin receptor mutants. PLoS Biology, 5(10), e277. doi: 10.1371/journal.pbio.0050277.
  51. Zhou, W., & Crystal, J. D. (2009). Evidence for remembering when events occurred in a rodent model of episodic memory. Proceedings of the National Academy of Sciences, 106, 9525–9529.CrossRefGoogle Scholar
  52. Zhou, M., & Smith, G. T. (2006). Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii. Journal of Experimental Biology, 209, 4809–4818.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Program in Cognitive Science and Department of History and Philosophy of ScienceIndiana UniversityBloomingtonUSA

Personalised recommendations