Skip to main content
Log in

What Ability Can Predict Mathematics Performance in Typically Developing Preschoolers and Those with Autism Spectrum Disorder?

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Research evaluating predictors of mathematics ability in preschoolers with autism spectrum disorder (ASD) is scarce and inconclusive. The present study first compared the mathematics ability and cognitive abilities of preschoolers with ASD and age-matched typically developing (TD) peers. Then, we examined the relative contributions of cognitive abilities to the mathematics ability of preschoolers with ASD and TD. The results show that compared to those of their age-matched TD peers, the mathematics and cognitive abilities of preschoolers with ASD were impaired. The predictors of mathematics ability were found to differ among preschoolers with ASD and their age-matched TD peers. For TD preschoolers, the domain-specific approximate number system (ANS) was the key predictor of mathematics ability. For preschoolers with ASD, domain-general working memory (WM) was most important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aagten-Murphy, D., Attucci, C., Daniel, N., Klaric, E., Burr, D., & Pellicano, E. (2015). Numerical estimation in children with autism. Autism Research, 8(6), 668–681. https://doi.org/10.1002/aur.1482

    Article  PubMed  Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing.

    Book  Google Scholar 

  • Andersson, U., & Ostergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22, 701–714. https://doi.org/10.1016/j.lindif.2012.05.004

    Article  Google Scholar 

  • Assouline, S. G., Nicpon, M. F., & Dockery, L. (2012). Predicting the academic achievement of gifted students with autism spectrum disorder. Journal of Autism and Developmental Disorders, 42, 1781–1789. https://doi.org/10.1007/s10803-011-1403-x

    Article  PubMed  Google Scholar 

  • Bae, Y. S., Chiang, H.-M., & Hickson, L. (2015). Mathematical word problem solving ability of children with autism spectrum disorder and their typically developing peers. Journal of Autism and Developmental Disorders, 45(7), 2200–2208. https://doi.org/10.1007/s10803-015-2387-8

    Article  PubMed  Google Scholar 

  • Balfe, P. (2001). A study of the induction experiences and the needs of teachers new to autistic spectrum disorders in the Republic of Ireland. Good Autism Practice Journal, 2, 75–85.

    Google Scholar 

  • Baron-Cohen, S., Wheelwright, S., Burtenshaw, A., & Hobson, E. (2007). Mathematical talent is linked to autism. Human Nature-an Interdisciplinary Biosocial Perspective, 18, 125–131. https://doi.org/10.1007/s12110-007-9014-0

    Article  PubMed  Google Scholar 

  • Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 1–33). Erlbaum.

    Google Scholar 

  • Bethany, R. J., Emily, R. F., Kerry, G. H., & Dale, C. F. (2016). Early math trajectories: Low-income children’s mathematics knowledge from ages 4 to 11. Child Development, 88(5), 1727–1742.

    Google Scholar 

  • Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false-belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 647–663. https://doi.org/10.1111/j.1467-8624.2007.01019.x

    Article  PubMed  Google Scholar 

  • Brown, F., & Snell, M. E. (2000). Instruction of students with severe disabilities. Prentice Hall.

    Google Scholar 

  • Brown, H. M., Oram-Cardy, J., & Johnson, A. (2013). A meta-analysis of the reading comprehension skills of individuals on the autism spectrum. Journal of Autism and Developmental Disorders, 43, 932–955. https://doi.org/10.1007/s10803-012-1638-1

    Article  PubMed  Google Scholar 

  • Bugden, S., Price, G. R., McLean, D. A., & Ansari, D. (2012). The role of the left intraparietal sulcus in the relationship between symbolic number processing and children’s arithmetic competence. Developmental Cognitive Neuroscience, 2(4), 448–457. https://doi.org/10.1016/j.dcn.2012.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8, 36–41.

    Article  Google Scholar 

  • Bullen, J. C., Lerro, L. S., Zajic, M., Mcintyre, N., & Mundy, P. (2020). A developmental study of mathematics in children with autism spectrum disorder, symptoms of attention deficit hyperactivity disorder, or typical development. Journal of Autism and Developmental Disorders, 50(6), 4463–4476.

    Article  PubMed  Google Scholar 

  • Burman, E. (2016). Deconstructing developmental psychology. Routledge.

    Book  Google Scholar 

  • Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics education on the number sense. PLoS ONE, 7(4), e33832. https://doi.org/10.1371/journal.pone.0033832

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Abrams, D. A., Rosenberg-Lee, M., Iuculano, T., Wakeman, H. N., Prathap, S., et al. (2018). Quantitative analysis of heterogeneity in academic achievement of children with autism. Clinical Psychological Science. https://doi.org/10.1177/2167702618809353

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Abrams, D. A., Rosenberg-Lee, M., Iuculano, T., Wakeman, H. N., Prathap, S., & Menon, V. (2019). Quantitative analysis of heterogeneity in academic achievement of children with autism. Clinical Psychological Science, 7(2), 362–380.

    Article  PubMed  Google Scholar 

  • Chiang, H. M., & Lin, Y. H. (2007). Mathematical ability of students with Asperger syndrome and high-functioning autism—A review of literature. Autism, 11, 547–556. https://doi.org/10.1177/1362361307083259

    Article  PubMed  Google Scholar 

  • Chu, F. W., Vanmarle, K., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212. https://doi.org/10.1016/j.jecp.2015.01.006

  • Church, C., Alisanski, S., & Amanullah, S. (2000). The social, behavioral, and academic experiences of children with Asperger syndrome. Focus on Autism and Other Developmental Disabilities, 15, 12–20. https://doi.org/10.1177/108835760001500102

    Article  Google Scholar 

  • Clayton, S., Gilmore, C., & Inglis, M. (2015). Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica, 161, 177–184.

    Article  PubMed  Google Scholar 

  • Cohen, R. J. & Swerdlik, M. (2009). Psychological testing and assessment: An introduction to tests and measurement (7th ed.).

  • Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. McGill University, Montreal: Unpublished doctoral dissertation.

  • Cui, J., Gao, D., Chen, Y., Zou, X., & Wang, Y. (2010). Working memory in early-school-age children with Asperger’s syndrome. Journal of Autism and Developmental Disorders, 40(8), 958–967. https://doi.org/10.1007/s10803-010-0943-9

    Article  PubMed  Google Scholar 

  • De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Working memory and individual differences in mathematics achievement: A longitudinal study from first grade to second grade. Journal of Experimental Child Psychology, 103(2), 186–201. https://doi.org/10.1016/j.jecp.2009.01.004

  • Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14(2), 218–224.

    Article  PubMed  Google Scholar 

  • Dietrich, J. F., Huber, S., & Nuerk, H. C. (2015). Methodological aspects to be considered when measuring the approximate number system (ANS)—A research review. Frontiers in Psychology, 6, 295. https://doi.org/10.3389/fpsyg.2015.00295

    Article  PubMed  PubMed Central  Google Scholar 

  • Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology, 26(1), 465–486.

    Article  PubMed  Google Scholar 

  • Estes, A., Rivera, V., Bryan, M., Cali, P., & Dawson, G. (2011). Discrepancies between academic achievement and intellectual ability in higher-functioning school-aged children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 41, 1044–1052.

    Article  PubMed  Google Scholar 

  • Fanning, P. A. J., Hocking, D. R., Dissanayake, C., & Vivanti, G. (2018). Delineation of a spatial working memory profile using a non-verbal eye-tracking paradigm in young children with autism and Williams syndrome. Child Neuropsychology, 24(4), 469–489. https://doi.org/10.1080/09297049.2017.1284776

    Article  PubMed  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.

    Article  PubMed  Google Scholar 

  • Floyd, R. G., Evans, J. J., & McGrew, K. S. (2003). Relations between measures of Cattell–Horn–Carroll (CHC) cognitive abilities and mathematics achievement across the school-age years. Psychology in the Schools, 40(2), 155–171. https://doi.org/10.1002/pits.10083

    Article  Google Scholar 

  • Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136–148. https://doi.org/10.1111/desc.12013

    Article  PubMed  Google Scholar 

  • Gabig, C. S. (2008). Verbal working memory and story retelling in school-age children with autism. Language, Speech, and Hearing Services in Schools, 39(4), 498–511. https://doi.org/10.1044/0161-1461(2008/07-0023

  • Gallistel, C. (2011). Prelinguistic thought. Language Learning and Development, 7(4), 253–262. https://doi.org/10.1080/15475441.2011.578548

    Article  Google Scholar 

  • Gardiner, E., Hutchison, S. M., Müller, U., Kerns, K. A., & Iarocci, G. (2017). Assessment of executive function in young children with and without ASD using parent ratings and computerized tasks of executive function. The Clinical Neuropsychologist, 31(8), 1283–1305. https://doi.org/10.1080/13854046.2017.1290139

  • Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics, 32, 250. https://doi.org/10.1097/DBP.0b013e318209edef

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgiades, S., Szatmari, P., & Boyle, M. (2013). Importance of studying heterogeneity in autism. Neuropsychiatry, 3, 123–125. https://doi.org/10.2217/npy.13.8

    Article  Google Scholar 

  • Gerstadt, C. L., Hong, Y. J., & Diamond, A. (1994). The relationship between cognition and action: Performance of children 3 1/2-7 years old on a Stroop-like day-night test. Cognition, 53(2), 129–153. https://doi.org/10.1016/0010-0277(94)90068-X

    Article  PubMed  Google Scholar 

  • Geurts, H. M., van den Bergh, S. F. W. M., & Ruzzano, L. (2014). Prepotent response inhibition and interference control in autism spectrum disorders: Two meta-analyses. Autism Research, 7(4), 407–420. https://doi.org/10.1002/aur.1369

    Article  PubMed  Google Scholar 

  • Geurts, H. M., Verté, S., Oosterlaan, J., Roeyers, H., & Sergeant, J. A. (2004). How specific are executive functioning deficits in attention deficit hyperactivity disorder and autism? Journal of Child Psychology and Psychiatry, 45(4), 836–854. https://doi.org/10.1111/j.1469-7610.2004.00276.x

    Article  PubMed  Google Scholar 

  • Gilmore, C., Attridge, N., & Inglis, M. (2011). Measuring the approximate number system. Quarterly Journal of Experimental Psychology, 64(11), 2099–2109. https://doi.org/10.1080/17470218.2011.574710

    Article  Google Scholar 

  • Ginsburg, H., & Baroody, A. J. (2003). TEMA-3: Test of early mathematics ability. Pro-ed.

    Google Scholar 

  • Gong, Y. X., & Dai, X. Y. (1988). China–Wechsler Younger Children Scale of Intelligence. Acta Psychologica Sinica, 20(4), 364–376.

    Google Scholar 

  • Griffin, C. C., & Jitendra, A. K. (2009). Word problem-solving instruction in inclusive third-grade mathematics classrooms. Journal of Educational Research, 102, 187–202.

    Article  Google Scholar 

  • Griswold, D. E., Barnhill, G. P., Myles, B. S., Hagiwara, T., & Simpson, R. L. (2002). Asperger syndrome and academic achievement. Focus on Autism and Other Developmental Disabilities, 17, 94–102.

    Article  Google Scholar 

  • Guillaume, M., Nys, J., Mussolin, C., & Content, A. (2013). Differences in the acuity of the approximate number system in adults: The effect of mathematical ability. Acta Psychologica, 144(3), 506–512.

    Article  PubMed  Google Scholar 

  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the" Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457. https://doi.org/10.1037/a0012682

    Article  PubMed  Google Scholar 

  • Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668.

    Article  PubMed  Google Scholar 

  • He, Y., Zhou, X., Shi, D., Song, H., Zhang, H., & Shi, J. (2016). New evidence on causal relationship between approximate number system (ANS) acuity and arithmetic ability in elementary-school students: A longitudinal cross-lagged analysis. Frontiers in Psychology, 7(26), 1052.

    PubMed  PubMed Central  Google Scholar 

  • Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1–27). Erlbaum.

    Google Scholar 

  • Hiniker, A., Rosenberg-Lee, M., & Menon, V. (2016). Distinctive role of symbolic number sense in mediating the mathematical abilities of children with autism. Journal of Autism and Developmental Disorders, 46(4), 1268–1281. https://doi.org/10.1007/s10803-015-2666-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics achievement: The contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 572.

    Article  Google Scholar 

  • Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system. Acta Psychologica, 145, 147–155.

    Article  PubMed  Google Scholar 

  • Iuculano, T., Rosenberg-Lee, M., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., et al. (2014). Brain organization underlying superior mathematical abilities in children with autism. Biological Psychiatry, 75(3), 223–230.

    Article  PubMed  Google Scholar 

  • Jiang, Y. V., Capistrano, C. G., & Palm, B. E. (2014). Spatial working memory in children with high-functioning autism: Intact configural processing but impaired capacity. Journal of Abnormal Psychology, 123(1), 248–257.

    Article  PubMed  Google Scholar 

  • Jiao, X. Y. (2017). Development, role, and promotion of inhibition control in preschool children (Doctoral dissertation, Northeast Normal University).

  • John, T. S., Dawson, G., & Estes, A. (2018). Brief report: Executive function as a predictor of academic achievement in school-aged children with ASD. Journal of Autism and Developmental Disorders, 48(1), 276–283. https://doi.org/10.1007/s10803-017-3296-9

    Article  PubMed Central  Google Scholar 

  • Jones, C. R. G., Happe, F., Golden, H., Marsden, A. J. S., Tregay, J., Simonoff, E., & Charman, T. (2009). Reading and arithmetic in adolescents with autism spectrum disorders: Peaks and dips in attainment. Neuropsychology, 23, 718–728. https://doi.org/10.1037/a0016360

    Article  PubMed  Google Scholar 

  • Kaufmann, L., Zotter, S., Pixner, S., Starke, M., Haberlandt, E., & Steinmayr-Gensluckner, M. (2013). Brief report: CANTAB performance and brain structure in pediatric patients with Asperger syndrome. Journal of Autism and Developmental Disorders, 43(6), 1483–1490. https://doi.org/10.1007/s10803-012-1686-6

    Article  PubMed  Google Scholar 

  • Keen, D., Webster, A., & Ridley, G. (2016). How well are children with autism spectrum disorder doing academically at school? An overview of the literature. Autism, 20, 276–294. https://doi.org/10.1177/1362361315580962

    Article  PubMed  Google Scholar 

  • Kercood, S., Grskovic, J. A., Banda, D., & Begeske, J. (2014). Working memory and autism: A review of literature. Research in Autism Spectrum Disorders, 8, 1316–1332. https://doi.org/10.1016/j.rasd.2014.06.011

    Article  Google Scholar 

  • Kim, H., & Cameron, C. E. (2016). Implications of visuospatial skills and executive functions for learning mathematics: Evidence from children with autism and Williams Syndrome. AERA Open. https://doi.org/10.1177/2332858416675124

    Article  Google Scholar 

  • Klingberg, T. (2006). Development of a superior frontal–intraparietal network for visuo-spatial working memory. Neuropsychologia, 44(11), 2171–2177.

    Article  PubMed  Google Scholar 

  • Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. (2013). Early numerical development and the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95–103. https://doi.org/10.1016/j.learninstruc.2012.12.001

    Article  Google Scholar 

  • Kroesbergen, E. H., Van Luit, J. E. H., Van Lieshout, E., Van Loosbroek, E., & Van de Rijt, B. A. M. (2009). Individual differences in early numeracy: The role of executive functions and subitizing. Journal of Psychoeducational Assessment, 27, 226–236.

    Article  Google Scholar 

  • Lanou, A., Hough, L., & Powell, E. (2012). Case studies on using strengths and interests to address the needs of students with autism spectrum disorders. Intervention in School and Clinic, 47, 175–182. https://doi.org/10.1177/1053451211423819

    Article  Google Scholar 

  • Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141(3), 373–379. https://doi.org/10.1016/j.actpsy.2012.09.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindskog, M., Winman, A., Juslin, P., & Poom, L. (2013). Measuring acuity of the approximate number system reliably and validly: The evaluation of an adaptive test procedure. Frontiers in Psychology, 4, 510. https://doi.org/10.3389/fpsyg.2013.00510

    Article  PubMed  PubMed Central  Google Scholar 

  • Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences, 109(46), 18737–18742. https://doi.org/10.1073/pnas.1207212109

    Article  Google Scholar 

  • Macizo, P., Soriano, M. F., & Paredes, N. (2016). Phonological and visuospatial working memory in autism spectrum disorders. Journal of Autism & Developmental Disorders, 46, 1–12.

    Article  Google Scholar 

  • May, T., Rinehart, N., Wilding, J., & Cornish, K. (2013). The role of attention in the academic attainment of children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 43, 2147–2158.

    Article  PubMed  Google Scholar 

  • May, T., Rinehart, N. J., Wilding, J., & Cornish, K. (2015). Attention and basic literacy and numeracy in children with Autism Spectrum Disorder: A one-year follow-up study. Research in Autism Spectrum Disorders, 9, 193–201. https://doi.org/10.1016/j.rasd.2014.10.010

    Article  Google Scholar 

  • Mayes, S. D., & Calhoun, S. L. (2003). Analysis of WISC-III, Stanford–Binet: IV, and academic achievement test scores in children with autism. Journal of Autism and Developmental Disorders, 33, 329–341. https://doi.org/10.1023/a:1024462719081

    Article  PubMed  Google Scholar 

  • Mayes, S. D., & Calhoun, S. L. (2008). WISC-IV and WIAT-II profiles in children with high-functioning autism. Journal of Autism and Developmental Disorders, 38, 428–439. https://doi.org/10.1007/s10803-007-0410-4

    Article  PubMed  Google Scholar 

  • McCauley, J. B., Zajic, M. C., Oswald, T. M., Swain-Lerro, L. E., McIntyre, N. C., Harris, M. A., & Solomon, M. (2018). Brief Report: Investigating relations between self-concept and performance in reading and math for school-aged children and adolescents with autism spectrum disorder. Journal of Autism and Developmental Disorders, 48(5), 1825–1832. https://doi.org/10.1007/s10803-017-3403-y

    Article  PubMed  Google Scholar 

  • McClelland, M. M., Cameron, C. E., Connor, C. M., Farris, C. L., Jewkes, A. M., & Morrison, F. J. (2007). Links between behavioural regulation and preschoolers’ literacy, vocabulary, and math skills. Developmental Psychology, 43, 947–959. https://doi.org/10.1037/0012-1649.43.4.947

    Article  PubMed  Google Scholar 

  • Meaux, E., Taylor, M. J., Pang, E. W., Vara, A. S., & Batty, M. (2014). Neural substrates of numerosity estimation in autism. Human Brain Mapping. https://doi.org/10.1002/hbm.22480

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, L. E., Burke, J. D., Troyb, E., Knoch, K., Herlihy, L. E., & Fein, D. A. (2017). Preschool predictors of school-age academic achievement in autism spectrum disorder. The Clinical Neuropsychologist, 31(2), 382–403. https://doi.org/10.1080/13854046.2016.1225665

    Article  PubMed  Google Scholar 

  • Mosconi, M. W., Kay, M., D’Cruz, A. M., Seidenfeld, A., Guter, S., Stanford, L. D., & Sweeney, J. A. (2009). Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders. Psychological Medicine, 39(9), 1559–1566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36, 27–43.

    Article  PubMed  Google Scholar 

  • Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490–502. https://doi.org/10.1016/j.jecp.2009.02.003

  • Newman, L., Wagner, M., Knokey, A. M., Marder, C., Nagle, K., Shaver, D., & Wei, X. (2011). The post-high school outcomes of young adults with disabilities up to 8 years after high school: A report from the national longitudinal transition study-2 (NLTS2). NCSER 2011-3005. National Center for Special Education Research.

  • Nys, J., & Content, A. (2012). Judgement of discrete and continuous quantity in adults: Number counts! Quarterly Journal of Experimental Psychology, 65(4), 675–690. https://doi.org/10.1080/17470218.2011.619661

    Article  Google Scholar 

  • Oswald, T. M., Beck, J. S., Iosif, A.-M., McCauley, J. B., Gilhooly, L. J., Matter, J. C., & Solomon, M. (2016). Clinical and cognitive characteristics associated with mathematics problem solving in adolescents with autism spectrum disorder: Factors related to math achievement in ASD. Autism Research, 9(4), 480–490. https://doi.org/10.1002/aur.1524

    Article  PubMed  Google Scholar 

  • Ozonoff, S., Pennington, B. F., & Rogers, S. J. (1991). Executive function deficits in high-functioning autistic individuals—Relationship to theory of mind. Journal of Child Psychology and Psychiatry and Allied Disciplines, 32, 1081–1105. https://doi.org/10.1111/j.1469-7610.1991.tb00351.x

    Article  PubMed  Google Scholar 

  • Ozonoff, S., & Strayer, D. L. (2001). Further evidence of intact working memory in autism. Journal of Autism and Developmental Disorders, 31, 257–263.

    Article  PubMed  Google Scholar 

  • Passolunghi, M. C., & Costa, H. M. (2019). Working memory and mathematical learning. International handbook of mathematical learning difficulties (pp. 407–421). Springer.

    Chapter  Google Scholar 

  • Passolunghi, M. C., Vercelloni, B., & Schadee, H. (2007). The precursors of mathematics learning: Working memory, phonological ability and numerical competence. Cognitive Development, 22, 165–184.

    Article  Google Scholar 

  • Pellizzoni, S., & Passolunghi, M. C. (2017). Convergent evaluation of working memory and arithmetic ability in a child with autism spectrum disorder without intellectual impairment. Frontiers in Psychology, 8, 1278. https://doi.org/10.3389/fpsyg.2017.01278

    Article  PubMed  PubMed Central  Google Scholar 

  • Piccardi, L., Palermo, L., Leonzi, M., Risetti, M., Zompanti, L., D’Amico, S., & Guariglia, C. (2014). The Walking Corsi Test (WalCT): A normative study of topographical working memory in a sample of 4-to 11-year-olds. The Clinical Neuropsychologist, 28(1), 84–96.

    Article  PubMed  Google Scholar 

  • Plaisted, K. C. (2001). Reduced generalization in autism: An alternative to weak central coherence. The development of autism: Perspectives from theory and research (pp. 149–169). Lawrence Erlbaum Associates.

    Google Scholar 

  • Prabhakaran, V., Rypma, B., & Gabrieli, J. D. (2001). Neural substrates of mathematical reasoning: A functional magnetic resonance imaging study of neocortical activation during performance of the necessary arithmetic operations test. Neuropsychology, 15(1), 115.

    Article  PubMed  Google Scholar 

  • Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychologica, 140(1), 50–57. https://doi.org/10.1016/j.actpsy.2012.02.008

    Article  PubMed  Google Scholar 

  • Raghubar, K., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122.

    Article  Google Scholar 

  • Sacks, O. (1986). The man who mistook his wife for a hat. Picador.

    Google Scholar 

  • Sasanguie, D., Van den Bussche, E., & Reynvoet, B. (2012). Predictors for mathematics achievement? Evidence from a longitudinal study. Mind, Brain, and Education, 6(3), 119–128. https://doi.org/10.1111/j.1751-228X.2012.01147.x

    Article  Google Scholar 

  • Schaefer-Whitby, P. J. (2013). The effects of Solve It! On the mathematical word problem solving ability of adolescents with autism spectrum disorders. Focus on Autism & Other Developmental Disabilities, 28(2), 78–88. https://doi.org/10.1177/1088357612468764

    Article  Google Scholar 

  • Schmitt, L. M., White, S. P., Cook, E. H., Sweeney, J. A., & Mosconi, M. W. (2018). Cognitive mechanisms of inhibitory control deficits in autism spectrum disorder. Journal of Child Psychology and Psychiatry, 59(5), 586–595. https://doi.org/10.1111/jcpp.12837

  • Schopler, E., Reichler, R. J., DeVellis, R. F., & Daly, K. (1980). Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). Journal of Autism and Developmental Disorders, 10(1), 91–103.

    Article  PubMed  Google Scholar 

  • Soltész, F., Szűcs, D., & Szűcs, L. (2010). Relationships between magnitude representation, counting and memory in 4-to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6(1), 1–14. https://doi.org/10.1186/1744-9081-6-13

    Article  Google Scholar 

  • Soulieres, I., Hubert, B., Rouleau, N., Gagnon, L., Tremblay, P., Seron, X., & Mottron, L. (2010). Superior estimation abilities in two autistic spectrum children. Cognitive Neuropsychology, 27, 261–276. https://doi.org/10.1080/02643294.2010.519228

    Article  PubMed  Google Scholar 

  • South, M., Ozonoff, S., & McMahon, W. M. (2007). The relationship between executive functioning, central coherence, and repetitive behaviors in the high-functioning autism spectrum. Autism, 11(5), 437–451.

    Article  PubMed  Google Scholar 

  • St John, T., Dawson, G., & Estes, A. (2018). Brief Report: Executive function as a predictor of academic achievement in school-aged children with ASD. Journal of Autism and Developmental Disorders, 48(1), 276–283. https://doi.org/10.1007/s10803-017-3296-9

    Article  PubMed  Google Scholar 

  • St John, T., Estes, A. M., Dager, S. R., Kostopoulos, P., Wolff, J. J., Pandey, J., & Piven, J. (2016). Emerging executive functioning and motor development in infants at high and low risk for autism spectrum disorder. Frontiers in Psychology, 7, 1016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steele, S. D., Minshew, N. J., Luna, B., & Sweeney, J. A. (2007). Spatial working memory deficits in autism. Journal of Autism and Developmental Disorders, 37, 605–612.

    Article  PubMed  Google Scholar 

  • Su, H. F. (2003). Don’t be puzzled by math. NCSM Journal of Mathematics Education Leadership, 6, 1–7.

    Google Scholar 

  • Swanson, H. L., & Jerman, O. (2006). Math disabilities: A selective meta-analysis of the literature. Review of Educational Research, 76(2), 249–274.

    Article  Google Scholar 

  • Swanson, H. L., Jerman, O., & Zheng, X. (2008). Growth in working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 100, 343.

    Article  Google Scholar 

  • Taub, G. E., Keith, T. Z., Floyd, R. G., & McGrew, K. S. (2008). Effects of general and broad cognition abilities on mathematics achievement. School Psychology Quarterly, 23(2), 187–198.

    Article  Google Scholar 

  • Titeca, D., Roeyers, H., Ceulemans, A., & Desoete, A. (2015a). Early numerical competencies in 5- and 6-year-old children with autism spectrum disorder. Early Education and Development, 26(7), 1012–1034. https://doi.org/10.1080/10409289.2015.1004515

    Article  Google Scholar 

  • Titeca, D., Roeyers, H., & Desoete, A. (2017). Early numerical competencies in 4- and 5-year-old children with autism spectrum disorder. Focus on Autism and Other Developmental Disabilities, 32(4), 279–292. https://doi.org/10.1177/1088357615588523

    Article  Google Scholar 

  • Titeca, D., Roeyers, H., Josephy, H., Ceulemans, A., & Desoete, A. (2014). Preschool predictors of mathematics in first grade children with autism spectrum disorder. Research in Developmental Disabilities, 35, 2714–2727.

    Article  PubMed  Google Scholar 

  • Titeca, D., Roeyers, H., Loeys, T., Ceulemans, A., & Desoete, A. (2015b). Mathematical abilities in elementary school children with autism spectrum disorder. Infant and Child Development, 24, 606–623. https://doi.org/10.1002/icd.1909

    Article  Google Scholar 

  • Toll, S. W., Kroesbergen, E. H., & Van Luit, J. E. (2016). Visual working memory and number sense: Testing the double deficit hypothesis in mathematics. British Journal of Educational Psychology, 86(3), 429–445.

    Article  PubMed  Google Scholar 

  • Toll, S. W., Van der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2011). Executive functions as predictors of math learning disabilities. Journal of Learning Disabilities, 44(6), 521–532. https://doi.org/10.1177/0022219410387302

    Article  PubMed  Google Scholar 

  • Treffert, D. A. (2000). The savant syndrome in autism: Clinical and research issues. York Press.

    Google Scholar 

  • Treffert, D. A. (2009). The savant syndrome: An extraordinary condition. A synopsis: Past, present, future. Philosophical Transactions of the Royal Society of London. Series b, Biological Sciences, 364(1522), 1351–1357.

    Article  PubMed  PubMed Central  Google Scholar 

  • Troyb, E., Orinstein, A., Tyson, K., Helt, M., Eigsti, I. M., Stevens, M., & Fein, D. (2014). Academic abilities in children and adolescents with a history of autism spectrum disorders who have achieved optimal outcomes. Autism, 18, 233–243. https://doi.org/10.1177/1362361312473519

    Article  PubMed  Google Scholar 

  • Tsai, C.-L., Pan, C.-Y., Wang, C.-H., Tseng, Y.-T., & Hsieh, K.-W. (2011). An event-related potential and behavioral study of impaired inhibitory control in children with autism spectrum disorder. Research in Autism Spectrum Disorders, 5(3), 1092–1102. https://doi.org/10.1016/j.rasd.2010.12.004

    Article  Google Scholar 

  • Turi, M., Burr, D. C., Igliozzi, R., Aagten-Murphy, D., Muratori, F., & Pellicano, E. (2015). Children with autism spectrum disorder show reduced adaptation to number. Proceedings of the National Academy of Sciences, 112(25), 7868–7872. https://doi.org/10.1073/pnas.1504099112

    Article  Google Scholar 

  • Urbain, C., Vogan, V. M., Ye, A. X., Pang, E. W., Doesburg, S. M., & Taylor, M. J. (2016). Desynchronization of fronto-temporal networks during working memory processing in autism. Human Brain Mapping, 37(1), 153–164.

    Article  PubMed  Google Scholar 

  • Valeri, G., Casula, L., Napoli, E., Stievano, P., Trimarco, B., Vicari, S., & Scalisi, T. G. (2020). Executive functions and symptom severity in an Italian sample of intellectually able preschoolers with autism spectrum disorder. Journal of Autism and Developmental Disorders, 50(9), 3207–3215. https://doi.org/10.1007/s10803-019-04102-0

    Article  PubMed  Google Scholar 

  • Vanbinst, K., Ghesquiere, P., & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6(3), 129–136. https://doi.org/10.1111/j.1751-228X.2012.01148.x

    Article  Google Scholar 

  • Wang, Z., Jing, J., Igarashi, K., Fan, L., Yang, S., Li, Y., & Jin, Y. (2018). Executive function predicts the visuospatial working memory in autism spectrum disorder and attention deficit/hyperactivity disorder. Autism Research, 11(8), 1148–1156. https://doi.org/10.1002/aur.1967

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1967). Wechsler preschool and primary scale of intelligence (p. 1967). Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (2009). Wechsler Individual Achievement Test, (WIAT-III) (3rd ed.). The Psychological Corporation.

    Google Scholar 

  • Wei, W., Yuan, H., Chen, C., & Zhou, X. (2012). Cognitive correlates of performance in advanced mathematics. British Journal of Educational Psychology, 82(1), 157–181. https://doi.org/10.1111/j.2044-8279.2011.02049.x

    Article  PubMed  Google Scholar 

  • Wei, X., Christiano, E. R., Jennifer, W. Y., Blackorby, J., Shattuck, P., & Newman, L. A. (2014). Postsecondary pathways and persistence for STEM versus non-STEM majors: Among college students with an autism spectrum disorder. Journal of Autism and Developmental Disorders, 44(5), 1159–1167. https://doi.org/10.1007/s10803-013-1978-5

  • Wei, X., Christiano, E. R. A., Yu, J. W., Wagner, M., & Spiker, D. (2015). Reading and math achievement profiles and longitudinal growth trajectories of children with an autism spectrum disorder. Autism: the International Journal of Research and Practice, 19(2), 200–210. https://doi.org/10.1177/1362361313516549

    Article  PubMed  Google Scholar 

  • Wei, X., Jennifer, W. Y., Shattuck, P., McCracken, M., & Blackorby, J. (2013). Science, technology, engineering, and mathematics (STEM) participation among college students with an autism spectrum disorder. Journal of Autism and Developmental Disorders, 43(7), 1539–1546. https://doi.org/10.1007/s10803-012-1700-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitby, P. J. S., & Mancil, G. R. (2009). Academic achievement profiles of children with high functioning autism and Asperger syndrome: A review of the literature. Education and Training in Developmental Disabilities, 44, 551–560.

    Google Scholar 

  • Williams, D. L., Goldstein, G., Carpenter, P. A., & Minshew, N. J. (2005). Verbal and spatial working memory in autism. Journal of Autism and Developmental Disorders, 35(6), 747–756. https://doi.org/10.1007/s10803-005-0021-x

    Article  PubMed  Google Scholar 

  • Williams, D. L., Goldstein, G., & Minshew, N. J. (2006). The profile of memory function in children with autism. Neuropsychology, 20(1), 21–29. https://doi.org/10.1037/0894-4105.20.1.21

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization. (2006). International statistical classification of diseases and related health problems, 10th revision.

  • Xenidou-Dervou, I., Van Luit, J. E., Kroesbergen, E. H., Friso-van den Bos, I., Jonkman, L. M., van der Schoot, M., & Van Lieshout, E. C. (2018). Cognitive predictors of children’s development in mathematics achievement: A latent growth modeling approach. Developmental Science, 21(6), e12671.

    Article  PubMed  Google Scholar 

  • Zhang, M., Jiao, J., Hu, X., Yang, P., Huang, Y., Situ, M., Guo, K., Cai, J., & Huang, Y. (2020). Exploring the spatial working memory and visual perception in children with autism spectrum disorder and general population with high autism-like traits. PLoS ONE, 15(7), e0235552. https://doi.org/10.1371/journal.pone.0235552

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinke, K., Fries, E., Altgassen, M., Kirschbaum, C., Dettenborn, L., & Kliegel, M. (2010). Visuospatial short-term memory explains deficits in tower task planning in high-functioning children with autism spectrum disorder. Child Neuropsychology, 16(3), 229–241.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Department of Finance of Jilin Province (CN), (Grant No. JJKH20201189SK), and Federation for the Humanities and Social Sciences (Grant No. 18YJA190016).

Author information

Authors and Affiliations

Authors

Contributions

LW designed and directed this study and drafted the manuscript; XL participated in the conceptual framing of the study, data analysis, and revision of the manuscript; XL, BJ, QW, LJ participated in the data collection.

Corresponding author

Correspondence to Lijuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The steps of the stepwise regression analysis using SPSS are as follows: (1) Click the menu “Analysis → Regression → Linear” in turn; (2) enter “early mathematics ability” in the "dependent variable" column on the display window, and enter ANS (w or ACC), verbal intelligence, operational intelligence, IC, and WM in the "independent variable" column (the order of input does not affect the analysis results); and (3) select the “Stepwise” regression method in the “Methods” column. Click the "OK" button. Finally, the analysis results will appear. The same process was performed for both TD and ASD preschoolers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liang, X., Jiang, B. et al. What Ability Can Predict Mathematics Performance in Typically Developing Preschoolers and Those with Autism Spectrum Disorder?. J Autism Dev Disord 53, 2062–2077 (2023). https://doi.org/10.1007/s10803-022-05454-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-022-05454-w

Keywords

Navigation