Skip to main content

Brief Report: Neuroimaging Endophenotypes of Social Robotic Applications in Autism Spectrum Disorder

Abstract

A plethora of neuroimaging studies have focused on the discovery of potential neuroendophenotypes useful to understand the etiopathogenesis of autism and predict treatment response. Social robotics has recently been proposed as an effective tool to strengthen the current treatments in children with autism. However, the high clinical heterogeneity characterizing this disorder might interfere with behavioral effects. Neuroimaging is set to overcome these limitations by capturing the level of heterogeneity. Here, we provide a preliminary evaluation of the neural basis of social robotics and how extracting neural hallmarks useful to design more effective behavioral applications. Despite the endophenotype-oriented neuroimaging research approach is in its relative infancy, this preliminary evidence encourages innovation to address its current limitations.

This is a preview of subscription content, access via your institution.

References

  1. American Psychological Association. (2017). APA Policy: Applied behavior analysis. https://www.apa.org/about/policy/applied-behavior-analysis.aspx

  2. Anzalone, S., Tanet, A., Pallanca, O., Cohen, D., Chetouani, M. (2019). A humanoid robot controlled by neurofeedback to reinforce attention in autism spectrum disorder. Proceedings of the 3rd Italian Workshop on Artificial Intelligence and Robotics, Bari, Italy.

  3. Chaminade, T., Da Fonsecam D., Rosset, D., Lutcher, E., Cheng, G., Deruelle, C. (2012). FMRI study of young adults with autism interacting with a humanoid robot, in Procedings of the 21st IEEE International Symposium on Robot and Human Interactive Communication, (Paris: IEEE). 380–385.

  4. David, N., Schneider, T. R., Peiker, I., Al-Jawahiri, R., Engel, A. K., & Milne, E. (2016). Variability of cortical oscillation patterns: A possible endophenotype in autism spectrum disorders? Neuroscience & Biobehavioral Reviews, 71, 590–600.

    Article  Google Scholar 

  5. Devlin, B., & Scherer, S. W. (2012). Genetic architecture in autism spectrum disorder. Current Opinion in Genetics & Development, 22(3), 229–37.

    Article  Google Scholar 

  6. Ecker, C. C., & Murphy, D. D. (2014). Neuroimaging in autism-from basic science to translational research. Nature Reviews Neurology, 10(2), 82–91.

    Article  Google Scholar 

  7. Fedotchev, A. I., Dvoryaninova, V. V., Velikova, S. D., & Zemlyanaya., (2019). Modern technologies in studying the mechanisms, diagnostics, and treatment of autism spectrum disorders. SovremennyeTehnologii v Medicine, 11(1), 31–38. https://doi.org/10.17691/stm2019.11.1.03.

    Article  Google Scholar 

  8. Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111.

    Article  Google Scholar 

  9. Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. Am J Psychiatry, 160(4), 636–45.

    Article  Google Scholar 

  10. Gottesman, I. I., & Shields, J. J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences of the USA, 58(1), 199–205.

    Article  Google Scholar 

  11. Goulart, C., Valadão, C., Caldeira, E., & Bastos, T. (2019). Brain signal evaluation of children with autism spectrum disorder in the interaction with a social robot. Biotechnology Research and Innovation, 3, 60–68.

    Article  Google Scholar 

  12. Grelotti, D. J., Klin, A. J., Gauthier, I., Skudlarski, P., Cohen, D. J., Gore, J. C., et al. (2005). fMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia, 43(3), 373–85.

    Article  Google Scholar 

  13. Jung, C. E., Strother, L., Feil-Seifer, D. J., & Hutsler, J. J. (2016). Atypical asymmetry for processing human and robot faces in autism revealed by fNIRS. PLoS One, 11(7), e0158804. https://doi.org/10.1371/journal.pone.0158804.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim, E. S., Berkovits, L. D., Bernier, E. P., Leyzberg, D., Shic, F., Paul, R., et al. (2013). Social robots as embedded reinforcers of social behavior in children with autism. Journal of Autism and Developmental Disorders, 43, 1038–1049. https://doi.org/10.1007/s10803-012-1645-2.

    Article  PubMed  Google Scholar 

  15. Lai, M. C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. Lancet, 383(9920), 896–910.

    Article  Google Scholar 

  16. Langdell, T. (1978). Recognition of faces: An approach for the study of autism. Journal of Child Psychology and Psychiatry, 19, 255–268.

    Article  Google Scholar 

  17. Lau, W. K. W., Leung, M. K., & Lau, B. W. M. (2019). Resting-state abnormalities in autism spectrum disorders: A meta-analysis. Sci Rep, 9(1), 3892.

    Article  Google Scholar 

  18. Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., et al. (2020). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveillance Summaries, 69(4), 1–12.

    Article  Google Scholar 

  19. Maglione, M. A., Gans, D., Das, L., Timbie, J., & Kasari, C. (2012). Nonmedical interventions for children with ASD: Recommended guidelines and further research needs. Pediatrics, 130(Suppl 2), S169–S178.

    Article  Google Scholar 

  20. Mahajan, R., & Mostofsky, S. H. (2015). Neuroimaging endophenotypes in autism spectrum disorder. CNS Spectrums, 20(4), 412–26.

    Article  Google Scholar 

  21. Marino, F., Chilà, P., Sfrazzetto, S. T., Carrozza, C., Crimi, I., Failla, C., et al. (2019). Outcomes of a robot-assisted social-emotional understanding intervention for young children with autism spectrum disorders. Journal of Autism and Developmental Disorders. https://doi.org/10.1007/s10803-019-03953-x.

    Article  Google Scholar 

  22. Masi, A., DeMayo, M. M., Glozier, N., & Guastella, A. J. (2017). An overview of autism spectrum disorder, heterogeneity and treatment options. Neuroscience Bulletin, 33(2), 183–193. https://doi.org/10.1007/s12264-017-0100-y.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pennisi, P., Tonacci, A., Tartarisco, G., Billeci, L., Ruta, L., Gangemi, S., et al. (2016). Autism and social robotics: A systematic review. Autism Research, 9(2), 165–83.

    Article  Google Scholar 

  24. Peters, J. M., Taquet, M., Vega, C., Jeste, S. S., Fernández, I. S., Tan, J., et al. (2013). Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity. BMC Medicine, 11, 54. https://doi.org/10.1186/1741-7015-11-54.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ruparelia, K., Manji, K., Abubakar, A., & Newton, C. R. (2017). Investigating the evidence of behavioral, cognitive, and psychiatric endophenotypes in autism: A systematic review. Autism Research and Treatment, 2017, 6346912. https://doi.org/10.1155/2017/6346912.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ruta, L., Marino, F., Cerasa, A., Pioggia, G. (2020). Robot-assisted social-emotional understanding intervention for young children with autism spectrum disorders. Encyclopedia of Autism Spectrum Disorders, Springer Editor, II Ed. ISBN: 978-3-319-91279-0. https://doi.org/10.1007/978-1-4614-6435-8_102457-1

  27. Saadatzi, M. N., Pennington, R. C., Welch, K. C., & Graham, J. H. (2018). Small-group technology-assisted instruction: Virtual teacher and robot peer for individuals with autism spectrum dis- order. Journal of Autism and Developmental Disorders, 48(11), 3816–3830.

    Article  Google Scholar 

  28. Sartorato, F., Przybylowski, L., & Sarko, D. K. (2017). Improving therapeutic outcomes in autism spectrum disorders: Enhancing social communication and sensory processing through the use of interactive robots. Journal of Psychiatric Research, 9, 1–11. https://doi.org/10.1016/j.jpsychires.2017.02.00.

    Article  Google Scholar 

  29. Schifter, T., Hoffman, J. M., Hatten, H. P., Jr., Hanson, M. W., Coleman, R. E., & DeLong, G. R. (1994). Neuroimaging in infantile autism. Journal of Child Neurology, 9(2), 155–61.

    Article  Google Scholar 

  30. Schultz, R. T., Grelotti, D. J., Klin, A., Kleinman, J., Van der Gaag, C., Marois, R., et al. (2003). The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philosophical Transactions of the Royal Society B: Biological Science, 358(1430), 415–27.

    Article  Google Scholar 

  31. Stoner, R. R., Chow, M. L. M., Boyle, M. P. M., et al. (2014). Patches of disorganization in the neocortex of children with autism. The New England Journal of Medicine, 370(13), 1209–19.

    Article  Google Scholar 

  32. Traut, N., Beggiato, A., Bourgeron, T., Delorme, R., Rondi-Reig, L., Paradis, A. L., et al. (2018). Cerebellar volume in autism: Literature meta-analysis and analysis of the autism brain imaging data exchange cohort. Biological Psychiatry, 83(7), 579–588.

    Article  Google Scholar 

  33. van den Berk-Smeekens, I., van Dongen-Boomsma, M., De Korte, M.W.P., Den Boer, J.C., Oosterling, I.J., Peters-Scheffer, N.C., et al. (2020) Adherence and acceptability of a robot-assisted pivotal response treatment protocol for children with autism spectrum disorder 10(1), 8110. https://doi.org/10.1038/s41598-020-65048-3.

  34. Virués-Ortega, J. (2010). Applied behavior analytic intervention for autism in early childhood: meta-analysis, meta-regression and dose-response meta-analysis of multiple outcomes. Clinical Psychology Review, 30(4), 387–99.

    Article  Google Scholar 

  35. Yun, S. S., Choi, J., Park, S. K., Bong, G. Y., & Yoo, H. (2017). Social skills training for children with autism spectrum disorder using a robotic behavioral intervention system. Autism Research, 10(7), 1306–1323.

    Article  Google Scholar 

Download references

Funding

Authors have no funding to declare.

Author information

Affiliations

Authors

Contributions

AC, GP contributed to writing of the first draft. LR, FM participated in the critique review. AC, GB contributed to conception and Organization of work. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Antonio Cerasa.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cerasa, A., Ruta, L., Marino, F. et al. Brief Report: Neuroimaging Endophenotypes of Social Robotic Applications in Autism Spectrum Disorder. J Autism Dev Disord 51, 2538–2542 (2021). https://doi.org/10.1007/s10803-020-04708-9

Download citation

Keywords

  • Autism spectrum disorder
  • Neuroimaging
  • Social robot
  • Neuroendophenotype