Light-Adapted Electroretinogram Differences in Autism Spectrum Disorder

Abstract

Light-adapted (LA) electroretinograms (ERGs) from 90 individuals with autism spectrum disorder (ASD), mean age (13.0 ± 4.2), were compared to 87 control subjects, mean age (13.8 ± 4.8). LA-ERGs were produced by a random series of nine different Troland based, full-field flash strengths and the ISCEV standard flash at 2/s on a 30 cd m−2 white background. A random effects mixed model analysis showed the ASD group had smaller b- and a-wave amplitudes at high flash strengths (p < .001) and slower b-wave peak times (p < .001). Photopic hill models showed the peaks of the component Gaussian (p = .035) and logistic functions (p = .014) differed significantly between groups. Retinal neurophysiology assessed by LA-ERG provides insight into neural development in ASD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Al Abdlseaed, A., McTaggart, Y., Ramage, T., Hamilton, R., & McCulloch, D. L. (2010). Light- and dark-adapted electroretinograms (ERGs) and ocular pigmentation: Comparison of brown- and blue-eyed cohorts. Documenta Ophthalmologica,121(2), 135–146.

    PubMed  Google Scholar 

  2. An, J. Y., Lin, K., Zhu, L., Werling, D. M., Dong, S., Brand, H., et al. (2018). Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science. https://doi.org/10.1126/science.aat6576.

    Article  PubMed  PubMed Central  Google Scholar 

  3. APA. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.

    Google Scholar 

  4. Autism Genome Project. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics,39(3), 319–328.

    Google Scholar 

  5. Baird, G., Simonoff, E., Pickles, A., Chandler, S., Loucas, T., Meldrum, D., et al. (2006). Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: The Special Needs and Autism Project (SNAP). The Lancet,368(9531), 210–215.

    Google Scholar 

  6. Baribeau, D. A., Dupuis, A., Paton, T. A., Hammill, C., Scherer, S. W., Schachar, R. J., et al. (2019). Structural neuroimaging correlates of social deficits are similar in autism spectrum disorder and attention-deficit/hyperactivity disorder: Analysis from the POND Network. Translational Psychiatry,9(1), 72. https://doi.org/10.1038/s41398-019-0382-0.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bertrand, J., Mars, A., Boyle, C., Bove, F., Yeargin-Allsopp, M., & Decoufle, P. (2001). Prevalence of autism in a United States population: The Brick Township, New Jersey, Investigation. Pediatrics,108(5), 1155–1161.

    PubMed  Google Scholar 

  8. Birch, D. G., & Anderson, J. L. (1992). Standardized Full-Field Electroretinography: Normal values and their variation with age. JAMA Ophthalmology,110(11), 1571–1576.

    Google Scholar 

  9. Bush, R. A., & Sieving, P. A. (1994). A proximal retinal component in the primate photopic ERG a-wave. Investigative Ophthalmology & Visual Science,35(2), 635–645.

    Google Scholar 

  10. Chapot, C. A., Euler, T., & Schubert, T. (2017). How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. Journal of Physiology,595(16), 5495–5506.

    PubMed  Google Scholar 

  11. Chaste, P., & Leboyer, M. (2012). Autism risk factors: Genes, environment, and gene-environment interactions. Dialogues in Clinical Neuroscience,14(3), 281–292.

    PubMed  PubMed Central  Google Scholar 

  12. Chisholm, K., Lin, A., Abu-Akel, A., & Wood, S. J. (2015). The association between autism and schizophrenia spectrum disorders: A review of eight alternate models of co-occurrence. Neuroscience and Biobehavioral Reviews,55, 173–183.

    PubMed  Google Scholar 

  13. Chung, Y. S., Barch, D., & Strube, M. (2014). A meta-analysis of mentalizing impairments in adults with schizophrenia and autism spectrum disorder. Schizophrenia Bulletin,40(3), 602–616.

    PubMed  Google Scholar 

  14. Coghlan, S., Horder, J., Inkster, B., Mendez, M. A., Murphy, D. G., & Nutt, D. J. (2012). GABA system dysfunction in autism and related disorders: From synapse to symptoms. Neuroscience and Biobehavioral Reviews,36(9), 2044–2055.

    PubMed  PubMed Central  Google Scholar 

  15. Constable, P. A., Gaigg, S. B., Bowler, D. M., Jägle, H., & Thompson, D. A. (2016). Full-field electroretinogram in autism spectrum disorder. Documenta Ophthalmologica,132(2), 83–99.

    PubMed  Google Scholar 

  16. Dai, H., Jackson, C. R., Davis, G. L., Blakely, R. D., & McMahon, D. G. (2017). Is dopamine transporter-mediated dopaminergic signaling in the retina a noninvasive biomarker for attention-deficit/ hyperactivity disorder? A study in a novel dopamine transporter variant Val559 transgenic mouse model. Journal of Neurodevelopmental Disorders,9(1), 38.

    PubMed  PubMed Central  Google Scholar 

  17. Dajani, D. R., Burrows, C. A., Odriozola, P., Baez, A., Nebel, M. B., Mostofsky, S. H., et al. (2019). Investigating functional brain network integrity using a traditional and novel categorical scheme for neurodevelopmental disorders. Neuroimage: Clinical,21, 101678. https://doi.org/10.1016/j.nicl.2019.101678.

    Article  Google Scholar 

  18. Dhingra, A., & Vardi, N. (2012). mGlu receptors in the retina. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling,1(5), 641–653.

    PubMed  Google Scholar 

  19. Doherty, J., Cooper, M., & Thapar, A. (2018). Advances in our understanding of the genetics of childhood neurodevelopmental disorders. Evid Based Ment Health,21(4), 171–172.

    PubMed  Google Scholar 

  20. Eggers, E. D., & Lukasiewicz, P. D. (2006). Receptor and transmitter release properties set the time course of retinal inhibition. Journal of Neuroscience,26(37), 9413–9425.

    PubMed  Google Scholar 

  21. Fatemi, S. H., & Folsom, T. D. (2015). GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophrenia Research,167(1–3), 42–56.

    PubMed  Google Scholar 

  22. Gadow, K. D., Roohi, J., DeVincent, C. J., Kirsch, S., & Hatchwell, E. (2010). Glutamate transporter gene (SLC1A1) single nucleotide polymorphism (rs301430) and repetitive behaviors and anxiety in children with autism spectrum disorder. Journal of Autism and Developmental Disorders,40(9), 1139–1145.

    PubMed  PubMed Central  Google Scholar 

  23. Gagné, A. M., Lavoie, J., Lavoie, M. P., Sasseville, A., Charron, M. C., & Hébert, M. (2010). Assessing the impact of non-dilating the eye on full-field electroretinogram and standard flash response. Documenta Ophthalmologica,121(3), 167–175.

    PubMed  Google Scholar 

  24. Gagné, A. M., Moreau, I., St-Amour, I., Marquet, P., & Maziade, M. (2019). Retinal function anomalies in young offspring at genetic risk of schizophrenia and mood disorder: The meaning for the illness pathophysiology. Schizophrenia Research. https://doi.org/10.1016/j.schres.2019.06.021.

    Article  PubMed  Google Scholar 

  25. Gotham, K., Pickles, A., & Lord, C. (2009). Standardizing ADOS scores for a measure of severity in autism spectrum disorders. Journal of Autism and Developmental Disorders,39(5), 693–705.

    PubMed  Google Scholar 

  26. Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., et al. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics,51(3), 431–444.

    PubMed  PubMed Central  Google Scholar 

  27. Guimaraes-Souza, E. M., Joselevitch, C., Britto, L. R. G., & Chiavegatto, S. (2019). Retinal alterations in a pre-clinical model of an autism spectrum disorder. Molecular Autism,10, 19. https://doi.org/10.1186/s13229-019-0270-8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Habela, C. W., Song, H., & Ming, G. L. (2015). Modeling synaptogenesis in schizophrenia and autism using human iPSC derived neurons. Molecular and Cellular Neuroscience. https://doi.org/10.1016/j.mcn.2015.12.002.

    Article  PubMed  Google Scholar 

  29. Hadley, D., Wu, Z. L., Kao, C., Kini, A., Mohamed-Hadley, A., Thomas, K., et al. (2014). The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism. Nature Communications,5, 4074. https://doi.org/10.1038/ncomms5074.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hamilton, R., Bees, M. A., Chaplin, C. A., & McCulloch, D. L. (2007). The luminance-response function of the human photopic electroretinogram: A mathematical model. Vision Research,47(23), 2968–2972.

    PubMed  Google Scholar 

  31. Hanna, M. C., & Calkins, D. J. (2007). Expression of genes encoding glutamate receptors and transporters in rod and cone bipolar cells of the primate retina determined by single-cell polymerase chain reaction. Mol Vis,13, 2194–2208.

    PubMed  Google Scholar 

  32. Hébert, M., Gagné, A. M., Paradis, M. E., Jomphe, V., Roy, M. A., Mérette, C., et al. (2010). Retinal response to light in young nonaffected offspring at high genetic risk of neuropsychiatric brain disorders. Biological Psychiatry,67(3), 270–274.

    PubMed  Google Scholar 

  33. Hébert, M., Merette, C., Gagne, A. M., Paccalet, T., Moreau, I., Lavoie, J., et al. (2020). The electroretinogram may differentiate schizophrenia from bipolar disorder. Biological Psychiatry,3(1), 263–270.

    Google Scholar 

  34. Hébert, M., Merette, C., Paccalet, T., Emond, C., Gagne, A. M., Sasseville, A., et al. (2015). Light evoked potentials measured by electroretinogram may tap into the neurodevelopmental roots of schizophrenia. Schizophrenia Research,162(1–3), 294–295.

    PubMed  Google Scholar 

  35. Hébert, M., Merette, C., Paccalet, T., Gagne, A. M., & Maziade, M. (2017). Electroretinographic anomalies in medicated and drug free patients with major depression: Tagging the developmental roots of major psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry,75, 10–15.

    PubMed  Google Scholar 

  36. Hobby, A. E., Kozareva, D., Yonova-Doing, E., Hossain, I. T., Katta, M., Huntjens, B., et al. (2018). Effect of varying skin surface electrode position on electroretinogram responses recorded using a handheld stimulating and recording system. Documenta Ophthalmologica,137(2), 79–86.

    PubMed  Google Scholar 

  37. Hoerder-Suabedissen, A., Oeschger, F. M., Krishnan, M. L., Belgard, T. G., Wang, W. Z., Lee, S., et al. (2013). Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia. Proceedings of the National academy of Sciences of the United States of America,110(9), 3555–3560.

    PubMed  PubMed Central  Google Scholar 

  38. Holopigian, K., Clewner, L., Seiple, W., & Kupersmith, M. J. (1994). The effects of dopamine blockade on the human flash electroretinogram. Documenta Ophthalmologica,86, 1–10.

    PubMed  Google Scholar 

  39. Ji, X., McFarlane, M., Liu, H., Dupuis, A., & Westall, C. A. (2019). Hand-held, dilation-free, electroretinography in children under 3 years of age treated with vigabatrin. Documenta Ophthalmologica,138(3), 195–203.

    PubMed  Google Scholar 

  40. Kato, K., Kondo, M., Nagashima, R., Sugawara, A., Sugimoto, M., Matsubara, H., et al. (2017). Factors affecting mydriasis-free flicker ERGs recorded with real-time correction for retinal illuminance: Study of 150 young healthy subjects. Investigative Ophthalmology & Visual Science,58(12), 5280–5286.

    Google Scholar 

  41. Kenny, E. M., Cormican, P., Furlong, S., Heron, E., Kenny, G., Fahey, C., et al. (2014). Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Molecular Psychiatry,19(8), 872–879.

    PubMed  Google Scholar 

  42. Lachapelle, P., Rufiange, M., & Dembinska, O. (2001). A physiological basis for definition of the ISCEV ERG standard flash (SF) based on the photopic hill. Documenta Ophthalmologica,102(2), 157–162.

    PubMed  Google Scholar 

  43. Lavoie, J., Illiano, P., Sotnikova, T. D., Gainetdinov, R. R., Beaulieu, J.-M., & Hébert, M. (2014a). The electroretinogram as a biomarker of central dopamine and serotonin: Potential relevance to psychiatric disorders. Biological Psychiatry,75(6), 479–486.

    PubMed  Google Scholar 

  44. Lavoie, J., Maziade, M., & Hebert, M. (2014b). The brain through the retina: The flash electroretinogram as a tool to investigate psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry,48, 129–134.

    PubMed  Google Scholar 

  45. Liu, H., Ji, X., Dhaliwal, S., Rahman, S. N., McFarlane, M., Tumber, A., et al. (2018). Evaluation of light- and dark-adapted ERGs using a mydriasis-free, portable system: Clinical classifications and normative data. Documenta Ophthalmologica,137(3), 169–181.

    PubMed  Google Scholar 

  46. Luo, J., Norris, R. H., Gordon, S. L., & Nithianantharajah, J. (2018). Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations. Progress in Neuro-Psychopharmacology and Biological Psychiatry,84(Pt B), 424–439.

    PubMed  Google Scholar 

  47. Luyster, R., Gotham, K., Guthrie, W., Coffing, M., Petrak, R., Pierce, K., et al. (2009). The Autism Diagnostic Observation Schedule-toddler module: A new module of a standardized diagnostic measure for autism spectrum disorders. Journal of Autism and Developmental Disorders,39(9), 1305–1320.

    PubMed  PubMed Central  Google Scholar 

  48. McCulloch, D. L., Kondo, M., Hamilton, R., Lachapelle, P., Messias, A. M. V., Robson, A. G., et al. (2019). ISCEV extended protocol for the stimulus-response series for light-adapted full-field ERG. Documenta Ophthalmologica,138(3), 205–215.

    PubMed  Google Scholar 

  49. McCulloch, D. L., Marmor, M. F., Brigell, M. G., Hamilton, R., Holder, G. E., Tzekov, R., et al. (2015). ISCEV Standard for full-field clinical electroretinography (2015 update). Documenta Ophthalmologica,130(1), 1–12.

    PubMed  Google Scholar 

  50. McPartland, J. C. (2016). Considerations in biomarker development for neurodevelopmental disorders. Current Opinion in Neurology,29(2), 118–122.

    PubMed  PubMed Central  Google Scholar 

  51. Mercer, A. J., & Thoreson, W. B. (2011). The dynamic architecture of photoreceptor ribbon synapses: Cytoskeletal, extracellular matrix, and intramembrane proteins. Visual Neuroscience,28(6), 453–471.

    PubMed  PubMed Central  Google Scholar 

  52. Miura, G., Baba, T., Oshitari, T., & Yamamoto, S. (2018). Flicker electroretinograms of eyes with cataract recorded with RETeval system before and after mydriasis. Clinical Ophthalmology,12, 427–432.

    PubMed  Google Scholar 

  53. Nowacka, B., Lubinski, W., Honczarenko, K., Potemkowski, A., & Safranow, K. (2015). Bioelectrical function and structural assessment of the retina in patients with early stages of Parkinson's disease (PD). Documenta Ophthalmologica,131(2), 95–104.

    PubMed  Google Scholar 

  54. Pathania, M., Davenport, E. C., Muir, J., Sheehan, D. F., Lopez-Domenech, G., & Kittler, J. T. (2014). The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Transl Psychiatry,4, e374. https://doi.org/10.1038/tp.2014.16.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pizzarelli, R., & Cherubini, E. (2011). Alterations of GABAergic signaling in autism spectrum disorders. Neural Plasticity,2011, 297153. https://doi.org/10.1155/2011/297153.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Popova, E. (2014). Role of dopamine in distal retina. Journal of Comparative Physiology,200(5), 333–358.

    PubMed  Google Scholar 

  57. Popova, E., & Kupenova, P. (2017). Interaction between the serotoninergic and GABAergic systems in frog retina as revealed by electroretinogram. Acta Neurobiologiae Experimentalis,77(4), 351–361.

    PubMed  Google Scholar 

  58. Realmuto, G., Purple, R., Knobloch, W., & Ritvo, E. (1989). Electroretinograms (ERGs) in four autistic probands and six first-degree relatives. Canadian Journal of Psychiatry,34(5), 435–439.

    PubMed  Google Scholar 

  59. Ritvo, E. R., Creel, D., Realmuto, G., Crandall, A. S., Freeman, B. J., Bateman, J. B., et al. (1988). Electroretinograms in autism: A pilot study of b-wave amplitudes. American Journal of Psychiatry,145(2), 229–232.

    PubMed  Google Scholar 

  60. Robson, A. G., Nilsson, J., Li, S., Jalali, S., Fulton, A. B., Tormene, A. P., et al. (2018). ISCEV guide to visual electrodiagnostic procedures. Documenta Ophthalmologica,136(1), 1–26.

    PubMed  Google Scholar 

  61. Rossignol, R., Ranchon-Cole, I., Paris, A., Herzine, A., Perche, A., Laurenceau, D., et al. (2014). Visual sensorial impairments in neurodevelopmental disorders: Evidence for a retinal phenotype in Fragile X Syndrome. PLoS ONE,9(8), e105996.

    PubMed  PubMed Central  Google Scholar 

  62. Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., et al. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 Risk Loci. Neuron,87(6), 1215–1233.

    PubMed  PubMed Central  Google Scholar 

  63. Schwitzer, T., Lavoie, J., Giersch, A., Schwan, R., & Laprevote, V. (2015). The emerging field of retinal electrophysiological measurements in psychiatric research: A review of the findings and the perspectives in major depressive disorder. Journal of Psychiatric Research,70, 113–120.

    PubMed  Google Scholar 

  64. Shen, Y., Rampino, M. A., Carroll, R. C., & Nawy, S. (2012). G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer. Proceedings of the National Academy of Sciences of the United States of America,109, 8752–8757.

    PubMed  PubMed Central  Google Scholar 

  65. Taylor, M. J., Martin, J., Lu, Y., Brikell, I., Lundstrom, S., Larsson, H., et al. (2019). Association of genetic risk factors for psychiatric disorders and traits of these disorders in a Swedish population twin sample. JAMA Psychiatry,76(3), 280–289.

    PubMed  Google Scholar 

  66. Thoreson, W. B., & Mangel, S. C. (2012). Lateral interactions in the outer retina. Progress in Retinal and Eye Research,31, 407–441.

    PubMed  PubMed Central  Google Scholar 

  67. Ueno, S., Kondo, M., Niwa, Y., Terasaki, H., & Miyake, Y. (2004). Luminance dependence of neural components that underlies the primate photopic electroretinogram. Investigative Ophthalmology & Visual Science,45(3), 1033–1040.

    Google Scholar 

  68. Uzunova, G., Hollander, E., & Shepherd, J. (2014). The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: Autism spectrum disorders and fragile x syndrome. Current Neuropharmacology,12(1), 71–98.

    PubMed  PubMed Central  Google Scholar 

  69. Wachtmeister, L. (1998). Oscillatory potentials in the retina: what do they reveal. Progress in Retinal and Eye Research,17(4), 485–521.

    PubMed  Google Scholar 

  70. Wali, N., & Leguire, L. E. (1992). Fundus pigmentation and the dark-adapted electroretinogram. Documenta Ophthalmologica,80(1), 1–11.

    PubMed  Google Scholar 

  71. Wechsler, D. (1999). Wechsler Abbreviated Intelligence Scale. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  72. Wechsler, D. (2003). Wechsler Intelligence Scale for Children-Fourth Edition. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  73. Youssef, P., Nath, S., Chaimowitz, G. A., & Prat, S. S. (2019). Electroretinography in psychiatry: A systematic literature review. European Psychiatry,62, 97–106.

    PubMed  Google Scholar 

  74. Yu, L., Wu, Y., & Wu, B. L. (2015). Genetic architecture, epigenetic influence and environment exposure in the pathogenesis of Autism. Science China Life Sciences,58(10), 958–967.

    PubMed  Google Scholar 

  75. Zhang, X., Piano, I., Messina, A., D'Antongiovanni, V., Cro, F., Provenzano, G., et al. (2019). Retinal defects in mice lacking the autism-associated gene Engrailed-2. Neuroscience. https://doi.org/10.1016/j.neuroscience.2019.03.061.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the participants and their families for their support. Quentin Davis and Joshua Santosa of LKC Technologies for programming the RETeval custom protocol.

Funding

This work was funded by research grants from the Alan B Slifka Foundation, National Institute of Health U19 MH108206, and National Institute for Health Research R01 MH100173.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul A. Constable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file2 (MP4 642 kb)

Supplementary file1 (DOCX 1306 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Constable, P.A., Ritvo, E.R., Ritvo, A.R. et al. Light-Adapted Electroretinogram Differences in Autism Spectrum Disorder. J Autism Dev Disord 50, 2874–2885 (2020). https://doi.org/10.1007/s10803-020-04396-5

Download citation

Keywords

  • Autism spectrum disorder
  • Electroretinogram
  • b-wave