Adolescent-Specific Motivation Deficits in Autism Versus Typical Development

Abstract

Differences in motivation during adolescence relative to childhood and adulthood in autism was tested in a cross-sectional study. 156 Typically developing individuals and 79 individuals with autism ages 10–30 years of age completed a go/nogo task with social and non-social cues. To assess age effects, linear and quadratic models were used. Consistent with prior studies, typically developing adolescents and young adults demonstrated more false alarms for positive relative to neutral social cues. In autism, there were no changes in attention across age for social or non-social cues. Findings suggest reduced orienting to motivating cues during late adolescence and early adulthood in autism. The findings provide a unique perspective to explain the challenges for adolescents with autism transitioning to adulthood.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA school-age forms profiles. Burlington, VT: University of Vermont Research Center for Children, Youth, & Families.

    Google Scholar 

  2. Anderson, K. A., Shattuck, P. T., Cooper, B. P., Roux, A. M., & Wagner, M. (2014). Prevalence and correlates of postsecondary residential status among young adults with an autism spectrum disorder. Autism,18(5), 562–570. https://doi.org/10.1177/1362361313481860.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bos, D. J., Ajodan, E. L., Silverman, M. R., Dyke, J. P., Durston, S., Power, J. D., et al. (2017). Neural correlates of preferred activities: Development of an interest-specific go/nogo task. Social Cognitive and Affective Neuroscience,12(12), 1890–1901. https://doi.org/10.1093/scan/nsx127.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bos, D. J., Silverman, M. R., Ajodan, E. L., Martin, C., Silver, B. M., Brouwer, G. J., et al. (2019). Rigidity coincides with reduced cognitive control to affective cues in children with autism. Journal of Abnormal Psychology. https://doi.org/10.1037/abn0000423.

    Article  PubMed  Google Scholar 

  5. Cascio, C. J., Foss-Feig, J. H., Heacock, J., Schauder, K. B., Loring W. A., Rogers, B. P., et al. (2014). Affective neural response to restricted interests in autism spectrum disorders. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 55, 162–171.

    Article  Google Scholar 

  6. Casey, B. J., & Jones, R. M. (2010). Neurobiology of the adolescent brain and behavior: Implications for substance use disorders. Journal of American Academy of Child and Adolescent Psychiatry, 49(12), 1189–1201; quiz 1285. https://doi.org/10.1016/j.jaac.2010.08.017.

    Google Scholar 

  7. Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences,1124, 111–126. https://doi.org/10.1196/annals.1440.010.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Casey, B., Jones, R. M., & Somerville, L. H. (2011). Braking and accelerating of the adolescent brain. Journal of Research on Adolescence,21(1), 21–33. https://doi.org/10.1111/j.1532-7795.2010.00712.x.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cheak-Zamora, N. C., Teti, M., & Maurer-Batjer, A. (2018). Capturing experiences of youth with ASD via photo exploration: Challenges and resources becoming an adult. Journal of Adolescent Research,33(1), 117–145. https://doi.org/10.1177/0743558416653218.

    Article  Google Scholar 

  10. Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., & Schultz, R. T. (2012). The social motivation theory of autism. Trends in Cognitive Science,16(4), 231–239. https://doi.org/10.1016/j.tics.2012.02.007.

    Article  Google Scholar 

  11. Clark, D. B., Chung, T., Martin, C. S., Hasler, B. P., Fitzgerald, D. H., Luna, B., …,Nagel, B. J. (2017). Adolescent executive dysfunction in daily life: Relationships to risks, brain structure and substance use. Frontiers in Behavioral Neuroscience,11, 223. https://doi.org/10.3389/fnbeh.2017.00223.

  12. Clements, C. C., Zoltowski, A. R., Yankowitz, L. D., Yerys, B. E., Schultz, R. T., & Herrington, J. D. (2018). Evaluation of the social motivation hypothesis of autism: A systematic review and meta-analysis. JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2018.1100.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Constantino, J. (2012). Social Responsiveness Scale (SRS-2). Los Angeles, CA: Western Psychological Services.

    Google Scholar 

  14. Constantino, J. N., Kennon-McGill, S., Weichselbaum, C., Marrus, N., Haider, A., Glowinski, A. L.,…,Jones, W. (2017). Infant viewing of social scenes is under genetic control and is atypical in autism. Nature,547(7663), 340–344. https://doi.org/10.1038/nature22999.

    Article  Google Scholar 

  15. Courchesne, E., Campbell, K., & Solso, S. (2011). Brain growth across the life span in autism: Age-specific changes in anatomical pathology. Brain Research,1380, 138–145. https://doi.org/10.1016/j.brainres.2010.09.101.

    Article  PubMed  Google Scholar 

  16. Dawson, G., Rogers, S., Munson, J., Smith, M., Winter, J., Greenson, J.,…,Varley, J. (2010). Randomized, controlled trial of an intervention for toddlers with autism: The Early Start Denver Model. Pediatrics, 125(1), e17–e23. https://doi.org/10.1542/peds.2009-0958.

    Article  Google Scholar 

  17. Dennis, M., Francis, D. J., Cirino, P. T., Schachar, R., Barnes, M. A., & Fletcher, J. M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15(3), 331–343.

    Article  Google Scholar 

  18. Di Martino, A., Choi, E. Y., Jones, R. M., Castellanos, F. X., & Mukerji, A. (2017). Imaging the striatum in autism spectrum disorder. In M. F. Casanova, A. El-Baz, & J. S. Suri (Eds.), Autism imaging and devices. Boca Raton, FL: Taylor and Francis Group.

    Google Scholar 

  19. Dichter, G. S., Felder, J. N., Green, S. R., Rittenberg, A. M., Sasson, N. J., & Bodfish, J. W. (2012). Reward circuitry function in autism spectrum disorders. Social Cognitive and Affective Neuroscience,7(2), 160–172. https://doi.org/10.1093/scan/nsq095.

    Article  PubMed  Google Scholar 

  20. Egger, H. L., Pine, D. S., Nelson, E., Leibenluft, E., Ernst, M., Towbin, K. E., et al. (2011). The NIMH Child Emotional Faces Picture Set (NIMH-ChEFS): A new set of children’s facial emotion stimuli. International Journal of Methods in Psychiatric Research, 20, 145–156.

    Article  Google Scholar 

  21. Elliot, C. D. (2007). Differential ability scales, (2nd Ed). San Antonio, TX: Harcourt Assessment Inc.

    Google Scholar 

  22. Farrant, K., & Uddin, L. Q. (2016). Atypical developmental of dorsal and ventral attention networks in autism. Developmental Science,19(4), 550–563. https://doi.org/10.1111/desc.12359.

    Article  PubMed  Google Scholar 

  23. Field, S., Hoffman, A., & Posch, M. (1997). Self-determination during adolescence—A developmental perspective. Remedial and Special Education,18(5), 285–293. https://doi.org/10.1177/074193259701800504.

    Article  Google Scholar 

  24. Foss-Feig, J. H., McGugin, R. W., Gauthier, I., Mash, L. E., Ventola, P., Cascio, C. J., et al. (2016). A functional neuroimaging study of fusiform response to restricted interests in children and adolescents with autism spectrum disorder. Journal of Neurodevelopmental Disorders, 8, 15.

    Article  Google Scholar 

  25. Foulkes, L., & Blakemore, S. J. (2016). Is there heightened sensitivity to social reward in adolescence? Current Opinion in Neurobiology,40, 81–85. https://doi.org/10.1016/j.conb.2016.06.016.

    Article  PubMed  Google Scholar 

  26. Gerhardt, P. F., & Lainer, I. (2011). Addressing the needs of adolescents and adults with autism: A crisis on the horizon. Journal of Contemporary Psychotherapy,41(1), 37–45.

    Article  Google Scholar 

  27. Greene, D. J., Colich, N., Iacoboni, M., Zaidel, E., Bookheimer, S. Y., & Dapretto, M. (2011). Atypical neural networks for social orienting in autism spectrum disorders. Neuroimage,56(1), 354–362. https://doi.org/10.1016/j.neuroimage.2011.02.031.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hare, T. A., & Casey, B. J. (2005). The Neurobiology and development of cognitive and affective control. Cognition, Brain, Behavior, 9(3), 273–286.

    Google Scholar 

  29. Harrop, C., Amsbary, J., Towner-Wright, S., Reichow, B., & Boyd, B. A. (2019). That’s what I like: The use of circumscribed interests within interventions for individuals with autism spectrum disorder. A systematic review. Research in Autism Spectrum Disorders,57, 63–86.

    Article  Google Scholar 

  30. Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J.,…,Statistical Analysis. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348–351. https://doi.org/10.1038/nature21369.

    Article  Google Scholar 

  31. Heller, A. S., Cohen, A. O., Dreyfuss, M. F., & Casey, B. J. (2016). Changes in cortico-subcortical and subcortico-subcortical connectivity impact cognitive control to emotional cues across development. Social Cognitive and Affective Neuroscience,11(12), 1910–1918. https://doi.org/10.1093/scan/nsw097.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang, P., Kao, T., Curry, A. E., & Durbin, D. R. (2012). Factors associated with driving in teens with autism spectrum disorders. Journal of Developmental and Behavioral Pediatrics,33(1), 70–74. https://doi.org/10.1097/dbp.0b013e31823a43b7.

    Article  PubMed  Google Scholar 

  33. Insel, C., Kastman, E. K., Glenn, C. R., & Somerville, L. H. (2017). Development of corticostriatal connectivity constrains goal-directed behavior during adolescence. Nature Communication,8(1), 1605. https://doi.org/10.1038/s41467-017-01369-8.

    Article  Google Scholar 

  34. Jones, R. M., Somerville, L. H., Li, J., Ruberry, E. J., Powers, A., Mehta, N.,…,Casey, B. J. (2014). Adolescent-specific patterns of behavior and neural activity during social reinforcement learning. Cognitive, Affective and Behavioral Neuroscience,14(2), 683–697. https://doi.org/10.3758/s13415-014-0257-z.

    Article  Google Scholar 

  35. Kann, L., McManus, T., Harris, W. A., Shanklin, S. L., Flint, K. H., Hawkins, J.,…, Zaza, S. (2016). Youth risk behavior surveillance—United States, 2015. MMWR Surveillance Summaries, 65(6), 1–174. https://doi.org/10.15585/mmwr.ss6506a1.

    Article  Google Scholar 

  36. Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., Carbonell, F., & Evans, A. C. (2017). Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: A large-scale MRI study. Cerebral Cortex,27(3), 1721–1731. https://doi.org/10.1093/cercor/bhx038.

    Article  PubMed  Google Scholar 

  37. Koegel, R., Fredeen, R., Kim, S., Danial, J., Rubinstein, D., & Koegel, L. (2012). Using perseverative interests to improve interactions between adolescents with autism and their typical peers in school settings. Journal of Positive Behavior Interventions,14(3), 133–141. https://doi.org/10.1177/1098300712437043.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Koegel, R., Kim, S., Koegel, L., & Schwartzman, B. (2013). Improving socialization for high school students with ASD by using their preferred interests. Journal of Autism and Developmental Disorders,43(9), 2121–2134. https://doi.org/10.1007/s10803-013-1765-3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kohls, G., Antezana, L., Mosner, M. G., Schultz, R. T., & Yerys, B. E. (2018). Altered reward system reactivity for personalized circumscribed interests in autism. Molecular Autism,9, 9. https://doi.org/10.1186/s13229-018-0195-7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kuhlthau, K. A., Delahaye, J., Erickson-Warfield, M., Shui, A., Crossman, M., & van der Weerd, E. (2016). Health care transition services for youth with autism spectrum disorders: Perspectives of caregivers. Pediatrics,137(Suppl 2), S158–S166. https://doi.org/10.1542/peds.2015-2851n.

    Article  PubMed  Google Scholar 

  41. Lakes, K. D., Swanson, J. M., & Riggs, M. (2012). The reliability and validity of the English and Spanish strengths and weaknesses of ADHD and normal behavior rating scales in a preschool sample. Journal of Attention Disorders, 16, 510–516.

    Article  Google Scholar 

  42. Lange, N., Travers, B. G., Bigler, E. D., Prigge, M. B., Froehlich, A. L., Nielsen, J. A.,…,Lainhart, J. E. (2014). Longitudinal volumetric brain changes in autism spectrum disorder ages 6–35 years. Autism Research. https://doi.org/10.1002/aur.1427.

    Article  Google Scholar 

  43. Lawrence, K. E., Hernandez, L. M., Bookheimer, S. Y., & Dapretto, M. (2019). Atypical longitudinal development of functional connectivity in adolescents with autism spectrum disorder. Autism Research,12(1), 53–65. https://doi.org/10.1002/aur.1971.

    Article  PubMed  Google Scholar 

  44. Levy, A., & Perry, A. (2011). Outcomes in adolescents and adults with autism: A review of the literature. Research in Autism Spectrum Disorders,5(4), 1271–1282. https://doi.org/10.1016/j.rasd.2011.01.023.

    Article  Google Scholar 

  45. Lin, H. Y., Ni, H. C., Lai, M. C., Tseng, W. I., & Gau, S. S. (2015). Regional brain volume differences between males with and without autism spectrum disorder are highly age-dependent. Molecular Autism. https://doi.org/10.1186/s13229-015-0022-3.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lisiecka, D. M., Holt, R., Tait, R., Ford, M., Lai, M. C., Chura, L. R.,…,Suckling, J. (2015). Developmental white matter microstructure in autism phenotype and corresponding endophenotype during adolescence. Translational Psychiatry,5, e529. https://doi.org/10.1038/tp.2015.23.

    Article  Google Scholar 

  47. Lombardo, M. V., Pierce, K., Eyler, L. T., Carter Barnes, C., Ahrens-Barbeau, C., Solso, S.,…,Courchesne, E. (2015). Different functional neural substrates for good and poor language outcome in autism. Neuron,86(2), 567–577. https://doi.org/10.1016/j.neuron.2015.03.023.

    Article  Google Scholar 

  48. Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule: ADOS-2. Los Angeles, CA West: Western Psychological Services.

    Google Scholar 

  49. Loth, E., Charman, T., Mason, L., Tillmann, J., Jones, E. J. H., Wooldridge, C.,…,Buitelaar, J. K. (2017). The EU-AIMS Longitudinal European Autism Project (LEAP): Design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders. Molecular Autism, 8, 24. https://doi.org/10.1186/s13229-017-0146-8.

  50. Lynch, C. J., Breeden, A. L., You, X., Ludlum, R., Gaillard, W. D., Kenworthy, L., et al. (2017). Executive dysfunction in autism spectrum disorder is associated with a failure to modulate frontoparietal-insular hub architecture. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging,2(6), 537–545. https://doi.org/10.1016/j.bpsc.2017.03.008.

    Article  Google Scholar 

  51. Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide (2nd ed.). New York: Psychological Press.

    Book  Google Scholar 

  52. Mangerud, W. L., Bjerkeset, O., Holmen, T. L., Lydersen, S., & Indredavik, M. S. (2014). Smoking, alcohol consumption, and drug use among adolescents with psychiatric disorders compared with a population based sample. Journal of Adolescence,37(7), 1189–1199. https://doi.org/10.1016/j.adolescence.2014.08.007.

    Article  PubMed  Google Scholar 

  53. Meyer, A. T., Powell, P. S., Butera, N., Klinger, M. R., & Klinger, L. G. (2018). Brief report: Developmental trajectories of adaptive behavior in children and adolescents with ASD. Journal of Autism and Developmental Disorders,48(8), 2870–2878.

    Article  Google Scholar 

  54. Murty, V. P., Calabro, F., & Luna, B. (2016). The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neuroscience and Biobehavioral Reviews,70, 46–58. https://doi.org/10.1016/j.neubiorev.2016.07.034.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pfeifer, J. H., Masten, C. L., Moore, W. E., III, Oswald, T. M., Mazziotta, J. C., Iacoboni, M., et al. (2011). Entering adolescence: Resistance to peer influence, risky behavior, and neural changes in emotion reactivity. Neuron,69(5), 1029–1036. https://doi.org/10.1016/j.neuron.2011.02.019.

    Article  PubMed  Google Scholar 

  56. Picci, G., & Scherf, K. S. (2015). A two-hit model of autism: Adolescence as the second hit. Clinical Psychological Science,3(3), 349–371. https://doi.org/10.1177/2167702614540646.

    Article  PubMed  Google Scholar 

  57. R Development Core Team. (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 10 Jan 2019.

  58. Ramos, M., Boada, L., Moreno, C., Llorente, C., Romo, J., & Parellada, M. (2013). Attitude and risk of substance use in adolescents diagnosed with Asperger syndrome. Drug and Alcohol Dependence,133(2), 535–540. https://doi.org/10.1016/j.drugalcdep.2013.07.022.

    Article  PubMed  Google Scholar 

  59. Rescorla, L. A., & Achenbach, T. M. (2004). The Achenbach System of Empirically Based Assessment (ASEBA) for Ages 18 to 90 Years. In M. E. Maruish (Ed.), The use of psychological testing for treatment planning and outcomes assessment: Instruments for adults (pp. 115–152). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  60. Rosen, M. L., Sheridan, M. A., Sambrook, K. A., Dennison, M. J., Jenness, J. L., Askren, M. K.,…, McLaughlin, K. A. (2017). Salience network response to changes in emotional expressions of others is heightened during early adolescence: Relevance for social functioning. Developmental Science. https://doi.org/10.1111/desc.12571.

    Article  Google Scholar 

  61. Rudie, J. D., Shehzad, Z., Hernandez, L. M., Colich, N. L., Bookheimer, S. Y., Iacoboni, M., et al. (2012). Reduced functional integration and segregation of distributed neural systems underlying social and emotional information processing in autism spectrum disorders. Cerebral Cortex,22(5), 1025–1037. https://doi.org/10.1093/cercor/bhr171.

    Article  PubMed  Google Scholar 

  62. Rutter, M., Bailey, A., & Lord, C. (2003). The social communication questionnaire: Manual. Los Angeles, CA: Western Psychological Services.

    Google Scholar 

  63. Sasson, N. J., Turner-Brown, L. M., Holtzclaw, T. N., Lam, K. S., & Bodfish, J. W. (2008). Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Research,1(1), 31–42. https://doi.org/10.1002/aur.4.

    Article  PubMed  Google Scholar 

  64. Scott-Van Zeeland, A. A., Dapretto, M., Ghahremani, D. G., Poldrack, R. A., & Bookheimer, S. Y. (2010). Reward processing in autism. Autism Research,3(2), 53–67. https://doi.org/10.1002/aur.122.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sedgewick, F., Hill, V., Yates, R., Pickering, L., & Pellicano, E. (2016). Gender differences in the social motivation and friendship experiences of autistic and non-autistic adolescents. Journal of Autism and Developmental Disorders,46(4), 1297–1306. https://doi.org/10.1007/s10803-015-2669-1.

    Article  PubMed  Google Scholar 

  66. Shafritz, K. M., Bregman, J. D., Ikuta, T., & Szeszko, P. R. (2015). Neural systems mediating decision-making and response inhibition for social and nonsocial stimuli in autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry,60, 112–120. https://doi.org/10.1016/j.pnpbp.2015.03.001.

    Article  PubMed  Google Scholar 

  67. Shattuck, P. T., Roux, A. M., Hudson, L. E., Taylor, J. L., Maenner, M. J., & Trani, J. F. (2012). Services for adults with an autism spectrum disorder. Canadian Journal of Psychiatry,57(5), 284–291. https://doi.org/10.1177/070674371205700503.

    Article  PubMed  Google Scholar 

  68. Simons-Morton, B., Lerner, N., & Singer, J. (2005). The observed effects of teenage passengers on the risky driving behavior of teenage drivers. Accident Analysis and Prevention,37(6), 973–982. https://doi.org/10.1016/j.aap.2005.04.014.

    Article  PubMed  Google Scholar 

  69. Solomon, M., Ozonoff, S. J., Ursu, S., Ravizza, S., Cummings, N., Ly, S., et al. (2009). The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia,47(12), 2515–2526. https://doi.org/10.1016/j.neuropsychologia.2009.04.019.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Somerville, L. H. (2013). Special issue on the teenage brain: Sensitivity to social evaluation. Current Directions in Psychological Science,22(2), 121–127. https://doi.org/10.1177/0963721413476512.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Somerville, L. H., Hare, T., & Casey, B. J. (2011). Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. Journal of Cognitive Neuroscience,23(9), 2123–2134. https://doi.org/10.1162/jocn.2010.21572.

    Article  PubMed  Google Scholar 

  72. Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review,28(1), 78–106. https://doi.org/10.1016/j.dr.2007.08.002.

    Article  PubMed  Google Scholar 

  73. Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., et al. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168(3), 242–249.

    Article  Google Scholar 

  74. Unruh, K. E., Sasson, N. J., Shafer, R. L., Whitten, A., Miller, S. J., Turner-Brown, L., et al. (2016). Social orienting and attention is influenced by the presence of competing nonsocial information in adolescents with autism. Frontiers in Neuroscience,10, 586. https://doi.org/10.3389/fnins.2016.00586.

    Article  PubMed  PubMed Central  Google Scholar 

  75. van Duijvenvoorde, A. C., Achterberg, M., Braams, B. R., Peters, S., & Crone, E. A. (2016a). Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses. Neuroimage,124(Pt A), 409–420. https://doi.org/10.1016/j.neuroimage.2015.04.069.

    Article  PubMed  Google Scholar 

  76. van Duijvenvoorde, A. C., Peters, S., Braams, B. R., & Crone, E. A. (2016b). What motivates adolescents? Neural responses to rewards and their influence on adolescents’ risk taking, learning, and cognitive control. Neuroscience and Biobehavioral Reviews,70, 135–147. https://doi.org/10.1016/j.neubiorev.2016.06.037.

    Article  PubMed  Google Scholar 

  77. Wallace, G. L., Dankner, N., Kenworthy, L., Giedd, J. N., & Martin, A. (2010). Age-related temporal and parietal cortical thinning in autism spectrum disorders. Brain,133(Pt 12), 3745–3754. https://doi.org/10.1093/brain/awq279.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wechsler, D. (2008). Wechsler Adult Intelligence Scale-Fourth Edition. San Antonio, TX: Pearson.

    Google Scholar 

  79. Zielinski, B. A., Prigge, M. B., Nielsen, J. A., Froehlich, A. L., Abildskov, T. J., Anderson, J. S.,…,Lainhart, J. E. (2014). Longitudinal changes in cortical thickness in autism and typical development. Brain,137(Pt 6), 1799–1812. https://doi.org/10.1093/brain/awu083.

    Article  Google Scholar 

  80. Zwaigenbaum, L., Bauman, M. L., Fein, D., Pierce, K., Buie, T., Davis, P. A.,…,Wagner, S. (2015). Early screening of autism spectrum disorder: Recommendations for practice and research. Pediatrics, 136(Suppl 1), S41–S59. https://doi.org/10.1542/peds.2014-3667d.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded in part by the Leon Levy Foundation, The Mortimer Sackler M.D. Foundation and The Sackler Infant Psychiatry Program, a KNAW Ter Meulen Grant and Samuel W. Perry III, MD Distinguished Award to DJB. We would like to thank Adriana Di Martino for contributing to participant recruitment, BJ Casey, Catherine Lord and Jonathan Power for helpful discussions, Gijs Brouwer for assistance with programming on the iPad, Sameen Belal and Shanping Qiu for data management and Amarelle Hamo and Caroline Carberry for assisting with data collection at the Sackler Institute for Developmental Psychobiology and CADB.

Author information

Affiliations

Authors

Contributions

Dienke J. Bos and Rebecca M. Jones contributed to the study conception and design. Material preparation, data collection were performed by Dienke J. Bos, Benjamin M. Silver, Emily D. Barnes, Eliana L. Ajodan, Melanie R. Silverman, Elysha Clark-Whitney and Rebecca M. Jones. Data analysis was performed by Dienke J. Bos, Thaddeus Tarpey and Rebecca M. Jones. The first draft of the manuscript was written by Dienke J. Bos and Rebecca M. Jones and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dienke J. Bos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bos, D.J., Silver, B.M., Barnes, E.D. et al. Adolescent-Specific Motivation Deficits in Autism Versus Typical Development. J Autism Dev Disord 50, 364–372 (2020). https://doi.org/10.1007/s10803-019-04258-9

Download citation

Keywords

  • Autism
  • Development
  • Adolescence
  • Cognitive control