Skip to main content

Motor Disturbance in ASD: A Pilot Study Showing Hypokinetic Behavior?

Abstract

Data supporting theoretical models linking autism spectrum disorders (ASD) to motor disturbance are inconclusive. In the present study, children and adolescents with ASD (n = 44) were compared with a matched group of typically developing individuals (n = 49) on both instrumental and observational assessments of motor abnormalities. No group differences were found in the instrumental data. However, more bradykinetic motor behavior was found using an observational scale in the ASD groups. More rigid motor behavior was found in the adolescents with ASD but not in the children. Individuals with ASD show significantly more hypokinetic behavior, which may not be strictly dopaminergic in origin, but may reflect a weak central coherency in neuronal networks related to the motor system in which developmental changes are present.

This is a preview of subscription content, access via your institution.

Illustration 1
Illustration 2
Illustration 3

References

  1. American Psychiatric Association. (2013). Diagnostic and Statistical manual of mental disorders (5th ed.). Washington DC: American Psychiatric Association.

    Book  Google Scholar 

  2. Ball, N., Teo, W. P., Chandra, S., & Chapman, J. (2019). Parkinson’s disease and the environment. Frontiers in Neurology,10, 218.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baradaran, N., Tan, S. N., Liu, A., Ashoori, A., Palmer, S. J., Wang, Z. J., et al. (2013). Parkinson’s disease rigidity: Relation to brain connectivity and motor performance. Frontiers in Neurology,4, 67.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benecke, R. (2002). Clinical features and laboratory findings for differentiating parkinsonian syndromes. Journal of Neurology. https://doi.org/10.1007/s00415-002-1302-3.

    Article  PubMed  Google Scholar 

  5. Berardelli, A., Dick, J. P., Rothwell, J. C., Day, B. L., & Marsden, C. D. (1986). Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson’s disease. Journal of Neurology Neurosurgery Psychiatry,49, 1273–1279.

    Article  Google Scholar 

  6. Brand, S., Jossen, S., Holsboer-Trachsler, E., Pühse, U., & Gerber, M. (2015). Impact of aerobic exercise on sleep and motor skills in children with autism spectrum disorders—A pilot study. Neuropsychiatric Disease and Treatment,11, 1911–1920.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burbach, J. P., & van der Zwaag, B. (2009). Contact in the genetics of autism and schizophrenia. Trends in Neuroscience,32, 69–72.

    Article  Google Scholar 

  8. Cacabelos, R. (2017). Parkinson’s disease: From pathogenesis to pharmacogenomics. International Journal of Molecular Science,18, 551.

    Article  Google Scholar 

  9. Caligiuri, M. P., & Lohr, J. B. (1990). Fine force instability: A quantitative measure of neuroleptic-induced dyskinesia in the hand. Journal of Neuropsychiatry and Clinical Neurosciences,2, 395–398.

    Article  Google Scholar 

  10. Caligiuri, M. P., & Lohr, J. B. (1994). A disturbance in the control of muscle force in neuroleptic-naive schizophrenic patients. Biological Psychiatry,35, 104–111.

    Article  Google Scholar 

  11. Caligiuri, M. P., Lohr, J. B., Rotrosen, J., Adler, L., Lavori, P., Edson, R., et al. (1997). Reliability of an instrumental assessment of tardive dyskinesia: Results from VA Cooperative Study #394. Psychopharmacology (Berl),132, 61–66.

    Article  Google Scholar 

  12. Caligiuri, M. P., Lohr, J. B., & Ruck, R. K. (1998). Scaling of movement velocity: A measure of neuromotor retardation in individuals with psychopathology. Psychophysiology,35, 431–437.

    Article  Google Scholar 

  13. Caligiuri, M. P., Lohr, J. B., Vaughan, R. M., & McAdams, L. A. (1995). Fluctuation of tardive dyskinesia. Biological Psychiatry,38, 336–339.

    Article  Google Scholar 

  14. Caligiuri, M. P., Teulings, H. L., Filoteo, J. V., Song, D., & Lohr, J. B. (2006). Quantitative measurement of handwriting in the assessment of drug-induced parkinsonism. Human Movement Science,25, 510–522.

    Article  Google Scholar 

  15. Cassidy, S., Hannant, P., Tavassoli, T., Allison, C., Smith, P., & Baron-Cohen, S. (2016). Dyspraxia and autistic traits in adults with and without autism spectrum conditions. Molecular Autism,7, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chow, J. W., & Stokic, D. S. (2016). Variability, frequency composition, and temporal regularity of submaximal isometric elbow flexion force in subacute stroke. Experimental Brain Research,234(11), 3145–3155.

    Article  Google Scholar 

  17. Clearfield, M. W. (2011). Learning to walk changes infants’ social interactions. Infant Behavior & Development,34, 15–25.

    Article  Google Scholar 

  18. Cortese, L., Caligiuri, M. P., Malla, A. K., Manchanda, R., Takhar, J., & Haricharan, R. (2005). Relationship of neuromotor disturbances to psychosis symptoms in first-episode neuroleptic-naive schizophrenia patients. Schizophrenia Research,75, 65–75.

    Article  Google Scholar 

  19. Damasio, A. R., & Maurer, R. G. (1978). A neurological model for childhood Autism. Archives of Neurology,35, 777–786.

    Article  Google Scholar 

  20. Dean, C. E., Russell, J. M., Kuskowski, M. A., Caligiuri, M. P., & Nugent, S. M. (2004). Clinical rating scales and instruments: How do they compare in assessing abnormal, involuntary movements? Journal of Clinical Psychopharmacology,24, 298–304.

    Article  Google Scholar 

  21. DeLong, M. R., & Wichman, T. (2007). Circuits and circuit disorders of the basal ganglia. Archives of Neurology,64, 20–24.

    Article  Google Scholar 

  22. Deutsch, K. M., & Newell, K. M. (2004). Changes in the structure of children’s isometric force variability with practice. Journal of Experimental Child Psychology,88(4), 319–333.

    Article  Google Scholar 

  23. Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., et al. (2011). Aberrant striatal functional connectivity in children with autism. Biological Psychiatry,69(9), 847–856.

    Article  Google Scholar 

  24. Floris, D. L., Barber, A. D., Nebel, M. B., Martinelli, M., Lai, M.-C., Crocetti, D., et al. (2016). Atypical lateralization of motor circuit functional connectivity in children with autism is associated with motor deficits. Molecular Autism,7, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N., & Cauraugh, J. H. (2010). Motor coordination in autism spectrum disorders: A synthesis and meta-analysis. Journal of Autism and Developmental Disorders,40, 1227–1240.

    Article  Google Scholar 

  26. Gassó, P., Mas, S., Bernardo, M., Álvarez, S., Parellada, E., & Lafuente, A. (2009). A common variant in DRD3 gene is associated with risperidone-induced extrapyramidal symptoms. The Pharmacogenomics Journal,9, 404–410.

    Article  Google Scholar 

  27. Glazer, W. M. (2000). Review of incidence studies of tardive dyskinesia associated with typical antipsychotics. The Journal of Clinical Psychiatry,61, 15–20.

    PubMed  Google Scholar 

  28. Gowen, E., & Hamilton, A. (2013). Motor abilities in autism: A review using a computational context. Journal of Autism and Developmental Disorders,43, 323–344.

    Article  Google Scholar 

  29. Green, D., Charman, T., Pickles, A., Chandler, S., Loucas, T., Simonoff, E., et al. (2009). Impairment in movement skills of children with autistic spectrum disorders. Developmental Medicine & Child Neurology,51, 311–316.

    Article  Google Scholar 

  30. Guy, E. (1976) Abnormal Involuntary Movement Scale, ECDEU assessment manual for psychopharmacology. National institute of mental Health, U.S. Department Health and Human Services, National institute of mental Health, U.S. Department Health and Human Services.

  31. Hahamy, A., Behrmann, M., & Malach, R. (2015). The idiosyncratic brain: Distortion of spontaneous connectivity patterns in autism spectrum disorder. Nature Neuroscience,18, 302–309.

    Article  Google Scholar 

  32. Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A., & Meneguzzi, F. (2017). Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clinical,17, 16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hilton, C. L., Zhang, Y., Whilte, M. R., Klohr, C. L., & Constantino, J. (2012). Motor impairment in sibling pairs concordant and discordant for autism spectrum disorders. Autism: The International Journal of Research and Practice,16, 430–441.

    Article  Google Scholar 

  34. Hollander, E., Wang, A. T., Braun, A., & Marsh, L. (2009). Neurological considerations: Autism and Parkinson’s Disease. Psychiatry Research,170, 43–51.

    Article  Google Scholar 

  35. Koning, J. P. (2011). Movement disorders in patients with schizophrenia and their siblings; symptoms, side effects and mechanical measurements. Utrecht: Psychiatry.

    Google Scholar 

  36. Koning, J. P., Kahn, R., Tenback, D. E., van Schelven, L. J., & van Harten, P. N. (2011). Movement disorders in nonpsychotic siblings of patients with nonaffective psychosis. Psychiatry Research,188, 133–137.

    Article  Google Scholar 

  37. Koning, J. P., Tenback, D. E., Kahn, R. S., Van Schelven, L. J., & Van Harten, P. N. (2010a). Instrument measurement of lingual force variability reflects tardive tongue dyskinesia. Journal of Medical Engineering & Technology,34, 71–77.

    Article  Google Scholar 

  38. Koning, J. P., Tenback, D. E., van Os, J., Aleman, A., Kahn, R. S., & van Harten, P. N. (2010b). Dyskinesia and Parkinsonism in antipsychotic-naive patients with schizophrenia, first-degree relatives and healthy controls: A meta-analysis. Schizophrenia Bulletin,36(4), 723–731.

    Article  Google Scholar 

  39. Koolen, S., Vissers, C. T. W. M., Egger, J. I. M., & Verhoeven, L. J. (2014). How stimulus and task complexity affect monitoring in high-functioning adults with autism spectrum disorder. Journal of Autism and Developmental Disorder,44, 2499–2513.

    Article  Google Scholar 

  40. Kostrubiec, V., Huys, R., Jas, B., & Kruck, J. (2017). Age-dependent relationship between socio-adaptability and motor coordination in high functioning children with autism spectrum disorder. Journal of Autism and Developmental Disorders,48, 209–224.

    Article  Google Scholar 

  41. Lohr, J. B., & Caligiuri, M. P. (1992). Quantitative instrumental measurement of tardive dyskinesia: A review. Neuropsychopharmacology,6, 231–239.

    PubMed  Google Scholar 

  42. Lord, C., Risi, S., Lambrecht, L., Cook, E., Leventhal, B., DiLavore, P., et al. (2000). Nederlandse bewerking: Bildt, A. de, & Jonge, M. V. de (2008). The Autism Diagnostic Observation Schedule—generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorder,30, 205–223.

    Article  Google Scholar 

  43. Lord, C., Rutter, M., & Le Couteur, A. (1994). Nederlandse bewerking: Jonge, M. V. de, & Bildt, A. de (2007). Autism Diagnostic Interview—revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders,24, 659–685.

    Article  PubMed  PubMed Central  Google Scholar 

  44. MacDonald, M., Lord, C., & Ulrich, D. A. (2013). The relationship of motor skills and social communicative skills in school-aged children with autism spectrum disorder. Adapted Physical Activity Quarterly,30, 271–282.

    Article  Google Scholar 

  45. Marko, M. K., Crocetti, D., Hulst, T., Donchin, O., Shadmehr, R., & Mostofsky, S. H. (2015). Behavioural and neural basis of anomalous motor learning in children with autism. Brain,138, 784–797.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Martinez-Martin, P., Gil-Nagel, A., Gracia, L. M., Gomez, J. B., Martinez-Sarries, J., & Bermejo, F. (1994). Unified Parkinson’s Disease Rating Scale characteristics and structure. The Cooperative Multicentric Group. Movement Disorders,9, 76–83.

    Article  Google Scholar 

  47. Maximo, J. O., Cadena, E. J., & Kana, R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychology Review,24(1), 16–31.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mittal, V. A., Daley, M., Shiode, M. F., Bearden, C. E., O’Neill, J., & Cannon, T. D. (2010). Striatal volumes and dyskinetic movements in youth at high-risk for psychosis. Schizophrenia Research,123, 68–70.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mittal, V. A., Orr, J. M., Turner, J. A., Pelletier, A. L., Dean, D. J., Lunsford-Avery, J., et al. (2013). Striatal abnormalities and spontaneous dyskinesias in non-clinical psychosis. Schizophrenia Research. https://doi.org/10.1016/j.schres.2013.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mody, M., Shui, A. M., Nowinski, L. A., Golas, S. B., Ferrone, C., O’Rourke, J. A., et al. (2017). Communication deficits and the motor system: Exploring patterns of associations in autism spectrum disorder (ASD). Journal of Autism and Developmental Disorders,47, 155–162.

    Article  Google Scholar 

  51. Monk, C. S., Peltier, S. J., Wiggins, J. L., Weng, S. J., Carrasco, M., Risi, S., et al. (2009). Abnormalities of intrinsic functional connectivity in autism spectrum disorders. NeuroImage,47, 764–772.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mostofsky, S. H., Burgess, M. P., & Gidley Larson, J. C. (2007). Increased motor cortex white matter volume predicts motor impairment in autism. Brain,130, 2117–2122.

    Article  Google Scholar 

  53. Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain,132, 2413–2415.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Müller, R. A., Shih, P., Keehn, B., Deyoe, J. R., Leyden, K. M., & Shukla, D. K. (2011). Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cerebral Cortex,21, 2233–2243.

    Article  Google Scholar 

  55. Nebel, M. B., Joel, S. E., Muschelli, J., Barber, A. D., Caffo, B. S., Pekar, J. J., et al. (2014). Disruption of functional organization within the primary motor cortex in children with autism. Human Brain Mapping,35, 567–580.

    Article  Google Scholar 

  56. Nguyen, M., Roth, A., Kyzar, E. J., Poudel, M. K., Wong, K., Stewart, A. M., et al. (2014). Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD). Neurochemistry International,66, 15–26.

    Article  Google Scholar 

  57. Nomi, J. S., & Uddin, L. Q. (2015). Developmental changes in large-scale network connectivity in autism. NeuroImage: Clinical,7, 732–741.

    Article  Google Scholar 

  58. Obeso, J. A., Rodriguez-Oroz, M. C., Stamelou, M., Bhatia, K. P., & Burn, D. J. (2014). The expanding universe of disorders of the basal ganglia. The Lancet,348, 523–531.

    Article  Google Scholar 

  59. O’Reilly, C., Lewis, J. D., & Elsabbagh, M. (2017). Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS ONE,12, e0175870.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ozonoff, S. (1995). Reliability and validity of the Wisconsin card sorting test in studies of autism. Neuropsychology,9, 491–500.

    Article  Google Scholar 

  61. Ozonoff, S., & Iosif, A. M. (2019). Changing conceptualizations of regression: What prospective studies reveal about the onset of autism spectrum disorder. Neuroscience and Biobehavioral Reviews,100, 296–304.

    Article  Google Scholar 

  62. Pusponegoro, H. D., Efar, P., Soebadi, A. S., Firmansyah, A., Chen, H. J., & Hung, K. L. (2016). Gross motor profile and its association with socialization skills in children with Autism spectrum disorders. Pediatrics and Neonatology,57, 501–507.

    Article  Google Scholar 

  63. Rane, P., Cochran, D., Hodge, S. M., Haselgrove, C., Kennedy, D., & Frazier, J. A. (2015). Connectivity in Autism: A review of MRI connectivity studies. Harvard Review of Psychiatry,23, 223–244.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shin, H. W., & Chung, S. J. (2012). Drug-induced Parkinsonism. Journal of Clinical Neurology,8, 15–21.

    Article  Google Scholar 

  65. Slifkin, A. B., & Newell, K. M. (1999). Noise, information transmission, and force variability. Journal of Experimental Psychology: Human Perception and Performance,25(3), 837–851.

    PubMed  Google Scholar 

  66. Srinivasan, S. M., Eigsti, I.-M., Gifford, T., & Bhat, A. N. (2015). The effects of embodied rhythm and robotic interventions on the spontaneous and responsive verbal communication skills of children with Autism Spectrum Disorder (ASD): A further outcome of a pilot randomized controlled trial. Research in Autism Spectrum Disorders,27, 73–87.

    Article  Google Scholar 

  67. Staal, W. G. (2015). Autism, DRD3 and receptive and stereotyped behavior, an overview of the current knowledge. European Neuropsychopharmacology,25, 1421–1426.

    Article  Google Scholar 

  68. Staal, W. G., Langen, M., van Dijk, S., Mensen, V. T., & Durston, S. (2015). DRD3 gene and striatum in autism spectrum disorder. British Journal of Psychiatry,206, 431–432.

    Article  Google Scholar 

  69. Starkstein, S., Gellar, S., Parlier, M., Payne, L., & Piven, J. (2015). High rates of parkinsonism in adults with autism. Journal of Neurodevelopmental Disorders,7, 29–39.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stein, R. B., & Oguztoreli, M. N. (1976). Tremor and other oscillations in neuromuscular systems. Biological Cybernetics,22, 147–157.

    Article  Google Scholar 

  71. Stone, W. S., & Iguchi, L. (2011). Do apparent overlaps between schizophrenia and autistic spectrum disorders reflect superficial similarities or etiological commonalities? North American Journal of Medicine & Science,4(3), 124–133.

    Article  Google Scholar 

  72. Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers in Human Neuroscience,7, 458.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Van Damme, T. V., Simons, J., Sabbe, B., & van West, D. (2015). Motor abilities of children and adolescents with a psychiatric condition: A systematic literature review. World Journal of Psychiatry,5, 315–329.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Van Harten, P. N., & Tenback, D. E. (2009). Movement disorders should be a criterion for schizophrenia in DSM-V. Psychological Medicine,39, 1754–1755.

    Article  Google Scholar 

  75. Vilensky, J. A., Damasio, A. R., & Maurer, R. G. (1981). Gait disturbance in patients with Autistic behaviour. Archives of Neurology,38, 646–649.

    Article  Google Scholar 

  76. Wechsler, D. (2005a). WAIS-III Nederlandstalige bewerking. Technische handleiding. Lisse: Harcourt Test Publishers.

    Google Scholar 

  77. Wechsler, D. (2005b). Nederlandse bewerking: Kort, W., Schittekatte, M., Dekker, P. H., Verhaeghe, P., Compaan, E. L., Bosmans, M., et al. (2005). Wechsler Intelligence Scale for Children Derde Editie NL: Handleiding en Verantwoording. Londen: Harcourt Test Publishers.

    Google Scholar 

  78. Weng, S. J., Wiggins, J. L., Peltier, S. J., Carrasco, M., Risi, S., Lord, C., et al. (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Research,1313, 202.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Woo, C. C., & Leon, M. (2013). Environmental enrichment as an effective treatment for Autism: A randomized controlled trial. Behavioral Neuroscience,127, 487–497.

    Article  Google Scholar 

  80. Woodward, N. D., Giraldo-Chica, M., Rogers, B., & Cascio, C. J. (2017). Thalamocortical dysconnectivity in autism spectrum disorder: An analysis of the Autism Brain Imaging Data Exchange. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging,2, 76–84.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Rebecca R. K. Stellato for her advice about the statistical analyses.

Author information

Affiliations

Authors

Contributions

MALMK conceived of the study, participated in its design and coordination, performed the measurement, performed the statistical analysis and drafted the manuscript; AW participated in the interpretation of the data, performed statistical analysis and drafted the manuscript; JPK participated in the design and coordination of the study and helped to draft the manuscript; DET participated in the interpretation of the data and helped to draft the manuscript; PVH participated in the interpretation of the data and helped to draft the manuscript; WGS conceived of the study, participated in its design and coordination, participated in the interpretation of the data and helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. A. L. Mostert-Kerckhoffs.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinski declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Details of the Procedure and Apparatus

Appendix: Details of the Procedure and Apparatus

Mechanical Instruments for Measuring Force Variability and Velocity Scaling

Measurement of Dyskinesia and Resting Tremor Using Force Variability (FV)

Dyskinesia can be assessed mechanically by measuring FV, as indicated by the subject’s attempt to exert constant pressure on a load cell (see Fig. 1) and measuring the variations in the force applied over time (Caligiuri and Lohr 1990, 1994; Cortese et al. 2005; Dean et al. 2004) (see Fig. 4).

Fig. 1
figure4

Mechanical instrument for measuring force variability and velocity scaling

Procedure

Participants are instructed to exert constant target pressure, first by pushing a button with the index finger of their hand to measure hand dyskinesia (Koning et al. 2011). The button and spatula are connected to a load cell attached to a monitor showing a real-time graph indicating target and actual force applied (Figs. 1, 2). The strength required to achieve the target height on the graph is set to an equivalent of 3 Newton for the index finger (Dean et al. 2004; Koning et al. 2011). Participants perform each exercise 3 times for a duration of 20 s each, separated by 5-s rest periods. The first trial is used to accustom the patient to the test. Mean data of the two subsequent measurements are used for analysis. For dyskinesia, only force variation measured in the 0 to 3 Hz frequency range is used as this reflects dyskinesia best (Lohr and Caligiuri 1992) and is unaffected by resting tremor (which is measured at the 4 to 6 Hz frequency band) (Stein and Oguztoreli 1976). This technique has been validated for finger dyskinesia (Caligiuri and Lohr 1990, 1994; Caligiuri et al. 1995, 1997; Cortese et al. 2005; Dean et al. 2004).

Fig. 2
figure5

Test for force variability, as seen on the computer screen. Example subject’s force variability when trying to match the target height of 3 N. N Newton

Technical Specifications Force Variability Measurement

Force Measurement
Force measurement finger
Button Plastic, directly connected to the loadcell
Load cell Load sensor for 3 kg nominal
Intended power 3.0 N (approx. 300 grams)
Pressure point height Approx. 25 cm above table top
Force measurement direction vertical, downward
Force measurement general  
Measuring range > 2 times intended force
Overload capability Safe up to 1.5 × nominal power of the sensor
Deviation < 0.4 mm at nominal force of the sensor
Inaccuracy According to specs sensor: < 0.3% at the intended force
Analog filtering 1st order Low Pass, − 3 dB at 200 Hz
Sampling 12 bit, 2.5 kHz
Digital filtering Low Pass, − 10% at 10 Hz, − 3 dB at 18 Hz
Software MS Windows, MatLAb
Hardware Laptop Dell Inspiron 1525,
Processor Intel Pentium duo core T2370
LCD display 15.4″ widescreen with a 1280 × 800 resolution

Measurement of Bradykinesia Using Velocity Scaling (VS)

Bradykinesia can be mechanically quantified by measuring the ability to adjust movement velocity to changing distances (Caligiuri et al. 1998, 2006). For example, normal individuals, when moving from one fixed target to another, perform different movements in roughly equal time. Thus, moving from one object to another 20 cm away takes approximately the same time as moving to an object 40 cm away when instructed to move as quickly as possible. To do this, the average velocity of the arm movement must increase to compensate for the longer target distance. Participants with bradykinesia (e.g. with Parkinson’s’ disease or drug-induced parkinsonism) are less able to scale their movement velocity and require more time as distances increase (Figs. 3, 4) (Benecke 2002; Berardelli et al. 1986; Caligiuri et al. 1998).

Fig. 3
figure6

Test for velocity scaling

Fig. 4
figure7

Example of subject with bradykinesia (unable to increase peak velocity when distance increases). Y-axis: maximum speed (peak velocity) of flexing wrist. X-axis: targeted distance located at 25° and 45° from the midline of the wrist flexion

Procedure

Participants are instructed to flex a handle (Fig. 1) with their wrist as fast but as accurately as possible in order to move a flexible cursor presented on the computer screen to a target cursor located at 25° and 45° from the midline of the wrist flexion (Fig. 3) (Caligiuri et al. 1998). The handle is connected to a potentiometer (Fig. 1) attached to monitor showing in real-time the target and flexible cursor (Fig. 3). Participants perform 32 movement measurements consisting of 16 measurements for each of the two randomly presented target locations, for each hand, for a total of 64 movements (Caligiuri et al. 1998). VS scores are expressed as degrees per second per degree (°/s/°). The VS measure is a valid and reliable measure of antipsychotic-induced bradykinesia (Caligiuri et al. 1998, 2006) (Fig. 5).

Fig. 5
figure8

Example of subject without bradykinesia (able to increase peak velocity when distance increases). Y-axis: maximum speed (peak velocity) of flexing wrist. X-axis: targeted distance located at 25° and 45° from the midline of the wrist flexion

Technical specifications velocity scaling 
Measuring rangeMeasured with a potentiometer with a range of ≥ 18°. The range is limited by working end stops.
InaccuracyAngle between end stops (120°) within ± 1% degree Position measurement potentiometer within ± 2 degrees (according to specs potentiometer).
Handle plateWith rubber handle, dimensions approx. 90 × 45 mm2.
Rest position handleVertical (rest = middle between end stops). This position is not visible or tangibly indicated on the mechanical arrangement
Direction axis of rotationHorizontal, approximately straight away from the person. Turns to the left (viewed counter-clockwise from the test subject) are measured as positive.
Handle rotaryFriction smooth running, mounted
PotentiometerRotary
Data acquisition instrumentHardware: National Instruments (NI) USB-6008
Sampling frequency12-Bit, 10 kS/s
MovementsSelf-paced

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mostert-Kerckhoffs, M.A.L., Willems, A.E., Tenback, D.E. et al. Motor Disturbance in ASD: A Pilot Study Showing Hypokinetic Behavior?. J Autism Dev Disord 50, 415–428 (2020). https://doi.org/10.1007/s10803-019-04171-1

Download citation

Keywords

  • Autism spectrum disorder
  • Motor disturbance
  • Parkinsonism
  • Dyskinesia