Abstract
There is growing evidence of altered connectivity in autism spectrum disorders (ASD) between the cerebellum and cortex. Three intrinsic connectivity networks (ICNs) are especially important to cognitive processing in ASD: the default mode network (DMN), executive control network (ECN), and salience networks (SNs). The goal of this study was to compare resting-state functional connectivity between the cerebellum and the DMN, ECN, and SN in ASD and typically developing children (n = 74, ages 7–12 years). Children with ASD showed stronger connectivity between the ventral DMN and left cerebellar lobules I–IV. No meaningful relationships were observed between ICN-cerebellar functional connectivity and ASD symptoms. These results suggest that the cerebellum contributes to altered network connectivity in ASD.
Similar content being viewed by others
References
Abbott, A. E., Nair, A., Keown, C. L., Datko, M., Jahedi, A., Fishman, I., et al. (2016). Patterns of atypical functional connectivity and behavioral links in autism differ between default, salience, and executive networks. Cerebral Cortex, 26, 4034–4045. https://doi.org/10.1093/cercor/bhv191.
Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. American Journal of Psychiatry, 160, 262–273. https://doi.org/10.1176/appi.ajp.160.2.262.
Allen, G., Müller, R. A., & Courchesne, E. (2004). Cerebellar function in autism: Functional magnetic resonance image activation during a simple motor task. Biological Psychiatry, 56, 269–278. https://doi.org/10.1016/j.biopsych.2004.06.005.
Andrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal mentation. Neuroscientist. https://doi.org/10.1177/1073858411403316.
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65, 550–562. https://doi.org/10.1016/j.neuron.2010.02.005.
Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., et al. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage, 53, 247–256. https://doi.org/10.1016/j.neuroimage.2010.05.067.Assaf.
Bechtel, N., Kobel, M., Penner, I. K., Klarhöfer, M., Scheffler, K., Opwis, K., et al. (2009). Decreased fractional anisotropy in the middle cerebellar peduncle in children with epilepsy and/or attention deficit/hyperactivity disorder: A preliminary study. Epilepsy and Behavior, 15, 294–298. https://doi.org/10.1016/j.yebeh.2009.04.005.
Brunberg, J. A., Jacquemont, S., Hagerman, R. J., Berry-Kravis, E. M., Grigsby, J., Leehey, M. A., et al. (2002). Fragile X premutation carriers: Characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. American Journal of Neuroradiology, 23, 1757–1766.
Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 2322–2345. https://doi.org/10.1152/jn.00339.2011.
Cheng, D. T., Meintjes, E. M., Stanton, M. E., Desmond, J. E., Pienaar, M., Dodge, N. C., et al. (2014). Functional MRI of cerebellar activity during eyeblink classical conditioning in children and adults. Human Brain Mapping, 35, 1390–1403. https://doi.org/10.1002/hbm.22261.
Cherkassky, V. L., Kana, R. K., Keller, T. A., & Just, M. A. (2006). Functional connectivity in a baseline resting-state network in autism. NeuroReport, 17, 1687–1690. https://doi.org/10.1097/01.wnr.0000239956.45448.4c.
Constantino, J. N. (2002). The social responsiveness scale. Los Angeles: Western Psychological Services.
Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57(2), 245–254.
Craig, M. C., Zaman, S. H., Daly, E. M., Cutter, W. J., Robertson, D. M., Hallahan, B., et al. (2007). Women with autistic-spectrum disorder: Magnetic resonance imaging study of brain anatomy. British Journal of Psychiatry, 191, 224–228. https://doi.org/10.1192/bjp.bp.106.034603.
D’Angelo, E., & Casali, S. (2012). Seeking a unified framework for cerebellar function and dysfunction: From circuit operations to cognition. Frontiers in Neural Circuits, 6, 116. https://doi.org/10.3389/fncir.2012.00116.
D’Mello, A. M., Crocetti, D., Mostofsky, S. H., & Stoodley, C. J. (2015). Cerebellar gray matter and lobular volumes correlate with core autism symptoms. NeuroImage: Clinical, 7, 631–639. https://doi.org/10.1016/j.nicl.2015.02.007.
D’Mello, A. M., & Stoodley, C. J. (2015). Cerebro-cerebellar circuits in autism spectrum disorder. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2015.00408.
De Guio, F., Jacobson, S. W., Molteno, C. D., Jacobson, J. L., & Meintjes, E. M. (2012). Functional magnetic resonance imaging study comparing rhythmic finger tapping in children and adults. Pediatric Neurology, 46, 94–100. https://doi.org/10.1016/j.pediatrneurol.2011.11.019.
Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2014). The Autism Brain Imaging Data Exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19, 659–667. https://doi.org/10.1038/mp.2013.78.
Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. NeuroImage, 33, 127–138. https://doi.org/10.1016/j.neuroimage.2006.05.056.
Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. NeuroImage, 46, 39–46. https://doi.org/10.1016/j.neuroimage.2009.01.045.
Diedrichsen, J., & Zotow, E. (2015). Surface-based display of volume-averaged cerebellar imaging data. PLoS ONE, 10, 1–18. https://doi.org/10.1371/journal.pone.0133402.
Doucet, G., Naveau, M., Petit, L., Delcroix, N., Zago, L., Crivello, F., et al. (2011). Brain activity at rest: A multiscale hierarchical functional organization. Journal of Neurophysiology, 105, 2753–2763. https://doi.org/10.1152/jn.00895.2010.
Du Plessis, L., Jacobson, S. W., Molteno, C. D., Robertson, F. C., Peterson, B. S., Jacobson, J. L., et al. (2015). Neural correlates of cerebellar-mediated timing during finger tapping in children with fetal alcohol spectrum disorders. NeuroImage: Clinical, 7, 562–570. https://doi.org/10.1016/j.nicl.2014.12.016.
Eluvathingal, T. J., Behen, M. E., Chugani, H. T., Janisse, J., Bernardi, B., Chakraborty, P., et al. (2006). Cerebellar lesions in tuberous sclerosis complex: Neurobehavioral and neuroimaging correlates. Journal of Child Neurology. https://doi.org/10.2310/7010.2006.00192.
Fatemi, S. H., Aldinger, K. A., Ashwood, P., Bauman, M. L., Blaha, C. D., Blatt, G. J., et al. (2012). Consensus paper: Pathological role of the cerebellum in Autism. Cerebellum, 11, 777–807. https://doi.org/10.1007/s12311-012-0355-9.
Fatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., Thuras, P., et al. (2002). Purkinje cell size is reduced in cerebellum of patients with autism. Cellular and Molecular Neurobiology, 22, 171–175. https://doi.org/10.1023/A:1019861721160.
Feng, X., Li, L., Zhang, M., Yang, X., Tian, M., Xie, W., et al. (2017). Dyslexic children show atypical cerebellar activation and cerebro-cerebellar functional connectivity in orthographic and phonological processing. Cerebellum, 16, 496–507. https://doi.org/10.1007/s12311-016-0829-2.
Gotham, K., Pickles, A., & Lord, C. (2009). Standardizing ADOS scores for a measure of severity in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39, 693–705. https://doi.org/10.1007/s10803-008-0674-3.
Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of USA, 100, 253–258. https://doi.org/10.1073/pnas.0135058100.
Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., et al. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. Journal of Neuroscience, 29, 8586–8594. https://doi.org/10.1523/JNEUROSCI.1868-09.2009.
Hardan, A. Y., Minshew, N. J., Harenski, K., & Keshavan, M. S. (2001). Posterior fossa magnetic resonance imaging in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 40, 666–672. https://doi.org/10.1097/00004583-200106000-00011.
Hashimoto, T., Tayama, M., Murakawa, K., Yoshimoto, T., Miyazaki, M., Harada, M., et al. (1995). Development of the brainstem and cerebellum in autistic patients. Journal of Autism and Developmental Disorders, 1995, 1–18. https://doi.org/10.1007/BF02178163.
Igelström, K. M., Webb, T. W., & Graziano, M. S. A. (2017). Functional connectivity between the temporoparietal cortex and cerebellum in autism spectrum disorder. Cerebral Cortex, 27, 2617–2627. https://doi.org/10.1093/cercor/bhw079.
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9, 304–313. https://doi.org/10.1038/nrn2332.
Jeong, J. W., Chugani, D. C., Behen, M. E., Tiwari, V. N., & Chugani, H. T. (2012). Altered white matter structure of the dentatorubrothalamic pathway in children with autistic spectrum disorders. Cerebellum, 11, 957–971. https://doi.org/10.1007/s12311-012-0369-3.
Just, M. A., Keller, T. A., Malave, V. L., Kana, R. K., & Varma, S. (2012). Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity. Neuroscience and Biobehavioral Reviews, 36, 1292–1313. https://doi.org/10.1016/j.neubiorev.2012.02.007.
Kana, R. K., Keller, T. A., Minshew, N. J., & Just, M. A. (2007). Inhibitory control in high-functioning autism: Decreased activation and underconnectivity in inhibition networks. Biological Psychiatry, 62, 198–206. https://doi.org/10.1016/j.biopsych.2006.08.004.
Kana, R. K., Libero, L. E., & Moore, M. S. (2011). Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Physics of Life Reviews, 8, 410–437. https://doi.org/10.1016/j.plrev.2011.10.001.
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., et al. (1997). Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 980–988. https://doi.org/10.1097/00004583-199707000-00021.
Khan, A. J., Nair, A., Keown, C. L., Datko, M. C., Lincoln, A. J., & Müller, R. A. (2015). Cerebro-cerebellar resting-state functional connectivity in children and adolescents with autism spectrum disorder. Biological Psychiatry, 78, 625–634. https://doi.org/10.1016/j.biopsych.2015.03.024.
Krienen, F. M., & Buckner, R. L. (2009). Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebral Cortex, 19, 2485–2497. https://doi.org/10.1093/cercor/bhp135.
Lord, C., Rutter, M., DiLavore, P., & Risi, S. (1999). Autism diagnostic observation system. Los Angeles: Western Psychological Services.
Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule: ADOS-2. Los Angeles: Western Psycholgical Services.
Lynch, C. J., Uddin, L. Q., Supekar, K., Khouzam, A., Phillips, J., & Menon, V. (2013). Default mode network in childhood autism: Posteromedial cortex heterogeneity and relationship with social deficits. Biological Psychiatry, 74, 212–219. https://doi.org/10.1016/j.biopsych.2012.12.013.
Maximo, J. O., Cadena, E. J., & Kana, R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychology Review. https://doi.org/10.1007/s11065-014-9250-0.
Mennes, M., Potler, N. V., Kelly, C., Di Martino, A., Castellanos, F. X., & Milham, M. P. (2012). Resting state functional connectivity correlates of inhibitory control in children with attention-deficit/hyperactivity disorder. Frontiers in Psychiatry, 2, 1–17. https://doi.org/10.3389/fpsyt.2011.00083.
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15, 483–506. https://doi.org/10.1016/j.tics.2011.08.003.
Mitchell, J. P. (2006). Mentalizing and Marr: An information processing approach to the study of social cognition. Brain Research, 1079, 66–75. https://doi.org/10.1016/j.brainres.2005.12.113.
Mosconi, M. W., Wang, Z., Schmitt, L. M., Tsai, P., & Sweeney, J. A. (2015). The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Frontiers in Neuroscience, 9, 1–24. https://doi.org/10.3389/fnins.2015.00296.
Mostofsky, S. H., Mazzocco, M. M. M., Aakalu, G., Warsofsky, I. S., Denckla, M. B., & Reiss, A. L. (1998). Decreased cerebellar posterior vermis size in fragile X syndrome. Neurology, 50, 121–130. https://doi.org/10.1212/WNL.50.1.121.
O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20, 953–965. https://doi.org/10.1093/cercor/bhp157.
Oldehinkel, M., Mennes, M., Marquand, A., Charman, T., Tillmann, J., Ecker, C., et al. (2019). Altered connectivity between cerebellum, visual, and sensory-motor networks in autism spectrum disorder: Results from the EU-AIMS Longitudinal European Autism Project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4, 260–270. https://doi.org/10.1016/j.bpsc.2018.11.010.
Olivito, G., Clausi, S., Laghi, F., Tedesco, A. M., Baiocco, R., Mastropasqua, C., et al. (2016). Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. https://doi.org/10.1007/s12311-016-0795-8.
Olivito, G., Lupo, M., Laghi, F., Clausi, S., Baiocco, R., Cercignani, M., et al. (2017). Lobular patterns of cerebellar resting-state connectivity in adults with Autism Spectrum Disorder. European Journal of Neuroscience. https://doi.org/10.1111/ejn.13752.
Padmanabhan, A., Lynch, C. J., Schaer, M., & Menon, V. (2017). The default mode network in autism. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2, 476–486. https://doi.org/10.1016/j.bpsc.2017.04.004.
Padmanabhan, A., Lynn, A., Foran, W., Luna, B., & O’Hearn, K. (2013). Age related changes in striatal resting state functional connectivity in autism. Frontiers in Human Neuroscience, 7, 1–16. https://doi.org/10.3389/fnhum.2013.00814.
Patriat, R., Molloy, E. K., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E., et al. (2013). The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. NeuroImage, 78, 463–473. https://doi.org/10.1016/j.neuroimage.2013.04.013.
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of National Academy of Science of USA, 98, 676–682. https://doi.org/10.1073/pnas.98.2.676.
Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., & Guthrie, D. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLA-NSAC autopsy research report. American Journal of Psychiatry, 143, 862–866. https://doi.org/10.1176/ajp.143.7.862.
Rogers, T. D., McKimm, E., Dickson, P. E., Goldowitz, D., Blaha, C. D., & Mittleman, G. (2013). Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Frontiers in Systems Neuroscience, 7, 15. https://doi.org/10.3389/fnsys.2013.00015.
Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22, 158–165. https://doi.org/10.1093/cercor/bhr099.
Solomon, M., Ozonoff, S., Ursu, S., Ravizza, S., Cummings, N., Ly, S., et al. (2009). The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2009.04.019.
Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21, 489–510. https://doi.org/10.1162/jocn.2008.21029.
Stoodley, C. J. (2012). The cerebellum and cognition: Evidence from functional imaging studies. Cerebellum, 11, 352–365. https://doi.org/10.1007/s12311-011-0260-7.
Stoodley, C. J. (2014). Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Frontiers in Systems Neuroscience, 8, 92. https://doi.org/10.3389/fnsys.2014.00092.
Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46, 831–844. https://doi.org/10.1016/j.cortex.2009.11.008.
Sundberg, M., & Sahin, M. (2015). Cerebellar development and autism spectrum disorder in tuberous sclerosis complex. Journal of Child Neurology, 30, 1954–1962. https://doi.org/10.1177/0883073815600870.
Tiemeier, H., Lenroot, R. K., Greenstein, D. K., Tran, L., Pierson, R., & Giedd, J. N. (2010). Cerebellum development during childhood and adolescence: A longitudinal morphometric MRI study. NeuroImage, 49, 63–70. https://doi.org/10.1016/j.neuroimage.2009.08.016.
Uddin, L., & Menon, V. (2009). The anterior insula in autism: Under-connected and under-examined. Neuroscience and Biobehavioral Reviews, 33, 1198–1203. https://doi.org/10.1016/j.neubiorev.2009.06.002.The.
Uddin, L. Q., Supekar, K., Lynch, C. J., Cheng, K. M., Odriozola, P., Barth, M. E., et al. (2015). Brain state differentiation and behavioral inflexibility in autism. Cerebral Cortex, 25, 4740–4747. https://doi.org/10.1093/cercor/bhu161.
Uddin, L., Supekar, K., Lynch, C., Khouzam, A., Phillips, J., Feinstein, C., et al. (2013a). Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry, 70, 869–879. https://doi.org/10.1001/jamapsychiatry.2013.104.
Uddin, L. Q., Supekar, K., & Menon, V. (2013b). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers in Human Neuroscience, 7, 458. https://doi.org/10.3389/fnhum.2013.00458.
van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431–438. https://doi.org/10.1016/j.neuroimage.2011.07.044.
Van Overwalle, F., & Mariën, P. (2016). Functional connectivity between the cerebrum and cerebellum in social cognition: A multi-study analysis. NeuroImage, 124, 248–255. https://doi.org/10.1016/j.neuroimage.2015.09.001.
Verly, M., Verhoeven, J., Zink, I., Mantini, D., Peeters, R., Deprez, S., et al. (2014). Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum. NeuroImage: Clinical, 4, 374–382. https://doi.org/10.1016/j.nicl.2014.01.008.
Weisenfeld, N. I., Peters, J. M., Tsai, P. T., Prabhu, S. P., Dies, K. A., Sahin, M., et al. (2013). A magnetic resonance imaging study of cerebellar volume in tuberous sclerosis complex. Pediatric Neurology, 48, 105–110. https://doi.org/10.1016/j.pediatrneurol.2012.10.011.
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2, 125–141. https://doi.org/10.1089/brain.2012.0073.
Acknowledgments
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The Project was funded by the UAB Department of Psychology Faculty Funds; there are no conflicts of interest to be declared. Authors would like to thank Dr. Sarah O’Kelley and Dr. Kristina Visscher for their input and support concerning the conceptualization and data analysis of this project.
Author Contributions
HB and RK conceived of the study. HB participated in its design, performed statistical analyses, participated in interpretation, and drafted the manuscript; RK participated in interpretation and revisions to the manuscript. All authors read and approved the final manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest.
Ethical Approval
The data used in this study is from a publicly available data repository called ABIDE. Individual studies contributing their data to the ABIDE database had gotten approval for human subject participation in their studies from their institutions.
Informed Consent
Since the data for this study comes from publicly available database, informed consent does not apply.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Bednarz, H.M., Kana, R.K. Patterns of Cerebellar Connectivity with Intrinsic Connectivity Networks in Autism Spectrum Disorders. J Autism Dev Disord 49, 4498–4514 (2019). https://doi.org/10.1007/s10803-019-04168-w
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10803-019-04168-w