Advertisement

Journal of Autism and Developmental Disorders

, Volume 49, Issue 11, pp 4572–4583 | Cite as

Early Second Trimester Maternal Serum Steroid-Related Biomarkers Associated with Autism Spectrum Disorder

  • Deborah A. BilderEmail author
  • M. Sean Esplin
  • Hilary Coon
  • Paul Burghardt
  • Erin A. S. Clark
  • Alison Fraser
  • Ken R. Smith
  • Whitney Worsham
  • Katlin Chappelle
  • Thomas Rayner
  • Amanda V. Bakian
Origina lPaper

Abstract

Epidemiologic studies link increased autism spectrum disorder (ASD) risk to obstetrical conditions associated with inflammation and steroid dysregulation, referred to as prenatal metabolic syndrome (PNMS). This pilot study measured steroid-related biomarkers in early second trimester maternal serum collected during the first and second trimester evaluation of risk study. ASD case and PNMS exposure status of index offspring were determined through linkage with autism registries and birth certificate records. ASD case (N = 53) and control (N = 19) groups were enriched for PNMS exposure. Higher estradiol and lower sex hormone binding globulin (SHBG) were significantly associated with increased ASD risk. Study findings provide preliminary evidence to link greater placental estradiol activity with ASD and support future investigations of the prenatal steroid environment in ASD.

Keywords

Autism Biomarkers Prenatal risk factors Metabolic syndrome 

Notes

Acknowledgments

We thank the Utah FASTER study participants whose contributions were essential for the success of this study. We appreciate the unique collaboration provided across the University of Utah, Intermountain Healthcare, Utah Registry of Autism and Developmental Disabilities, Utah Department of Health, Utah State Board of Education, and the Pedigree and Population Resource (funded by the Huntsman and Intermountain Healthcare Cancer Foundation).

Author Contributions

DBA and AVB designed and performed the research, analyzed data, and wrote the manuscript with input from other authors. MSE, EASC, KRS and AF designed and performed the research. PB and KC designed and performed the research and completed serum analyses. HC designed and performed the research and analyzed the data. TR and WW designed and performed the research and wrote the manuscript with input from the other authors.

Compliance with Ethical Standards

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Utah Registry of Autism and Developmental Disabilities Oversight Committee, Utah State Office of Education, and the Institutional Review Boards of the University of Utah, Intermountain Healthcare, Utah Department of Health, and Resource for Genetic and Epidemiologic Research Review Committee, which is an oversight body that regulates Utah Population Database access and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

10803_2019_4162_MOESM1_ESM.docx (118 kb)
Supplementary material 1 (DOCX 118 kb)

References

  1. Albrecht, E. D., & Pepe, G. J. (1999). Central integrative role of oestrogen in modulating the communication between the placenta and fetus that results in primate fecal-placental development. Placenta, 20(2–3), 129–139.CrossRefGoogle Scholar
  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Philadelphia: American Psychiatric Association.  https://doi.org/10.1176/appi.books.9780890425596.CrossRefGoogle Scholar
  3. Anderson, J. N., Peck, E. J., & Clark, J. H. (1975). Estrogen-induced uterine responses and growth: Relationship to receptor estrogen binding by uterine nuclei. Endocrinology, 96(1), 160–167.  https://doi.org/10.1210/endo-96-1-160.CrossRefGoogle Scholar
  4. Andridge, R. R., & Little, R. J. A. (2010). A review of hot deck imputation for survey non-response. International Statistical Review = Revue Internationale de Statistique, 78(1), 40–64.  https://doi.org/10.1111/j.1751-5823.2010.00103.x.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baio, J., Wiggins, L., Christensen, D. L., Maenner, M. J., Daniels, J., & Warren, Z. (2018). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. Morbidity and Mortality Weekly Report. Surveillance Summaries (Washington, D.C.: 2002), 67(6), 1–23.  https://doi.org/10.15585/mmwr.ss6706a1.CrossRefGoogle Scholar
  6. Bakian, A. V., Bilder, D. A., Carbone, P. S., Hunt, T. D., Petersen, B., & Rice, C. E. (2015a). Brief report: independent validation of autism spectrum disorder case status in the Utah Autism and Developmental Disabilities Monitoring (ADDM) network site. Journal of Autism and Developmental Disorders, 45(3), 873–880.  https://doi.org/10.1007/s10803-014-2187-6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bakian, A. V., Bilder, D. A., Coon, H., & McMahon, W. M. (2015b). Spatial relative risk patterns of autism spectrum disorders in Utah. Journal of Autism and Developmental Disorders, 45(4), 988–1000.  https://doi.org/10.1007/s10803-014-2253-0.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baron-Cohen, S., Auyeung, B., Nørgaard-Pedersen, B., Hougaard, D. M., Abdallah, M. W., Melgaard, L., et al. (2015). Elevated fetal steroidogenic activity in autism. Molecular Psychiatry, 20, 369–376.CrossRefGoogle Scholar
  9. Bilder, D. A., Bakian, A. V., Viskochil, J., Clark, E. A. S., Botts, E. L., Smith, K. R., et al. (2013). Maternal prenatal weight gain and autism spectrum disorders. Pediatrics, 132(5), e1276–e1283.  https://doi.org/10.1542/peds.2013-1188.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brown, A. S., Sourander, A., Hinkka-Yli-Salomäki, S., McKeague, I. W., Sundvall, J., & Surcel, H.-M. (2014). Elevated maternal C-reactive protein and autism in a national birth cohort. Molecular Psychiatry, 19(2), 259–264.  https://doi.org/10.1038/mp.2012.197.CrossRefGoogle Scholar
  11. Center for Disease Control and Prevention, Autism and Developmental Disabilities Monitoring Network Surveillance Year 2002 Principal Investigators. (2007). Prevalence of Autism Spectrum DisordersAutism and Developmental Disabilities Monitoring Network, 14 Sites, United States, 2002 (MMWR No. 56) (pp. 12–28)Google Scholar
  12. Corbett, B. A., Mendoza, S., Abdullah, M., Wegelin, J. A., & Levine, S. (2006). Cortisol circadian rhythms and response to stress in children with autism. Psychoneuroendocrinology, 31(1), 59–68.  https://doi.org/10.1016/j.psyneuen.2005.05.011.CrossRefGoogle Scholar
  13. Coulter, C. L., & Jaffe, R. B. (1998). Functional maturation of the primate fetal adrenal in vivo: 3. Specific zonal localization and developmental regulation of CYP21A2 (P450c21) and CYP11B1/CYP11B2 (P450c11/aldosterone synthase) lead to integrated concept of zonal and temporal steroid biosynthesis. Endocrinology, 139(12), 5144–5150.  https://doi.org/10.1210/endo.139.12.6333.CrossRefGoogle Scholar
  14. Cunningham, F. G. (2010). Implantation, embryogenesis, and placental development. In F. Cunningham (Ed.), Williams obstetrics, (23rd ed., pp. 36–77) New York: McGraw-Hill. Medical, c2010.Google Scholar
  15. DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44(3), 837–845.  https://doi.org/10.2307/2531595.CrossRefGoogle Scholar
  16. Dobie, S. A., Baldwin, L. M., Rosenblatt, R. A., Fordyce, M. A., & Andrilla, C. H. (1998). How well do birth certificates describe the pregnancies they report? The Washington State experience with low-risk pregnancies. Maternal and Child Health Journal, 2(3), 145–154.CrossRefGoogle Scholar
  17. Dodds, L., Fell, D. B., Shea, S., Armson, B. A., Allen, A. C., & Bryson, S. (2011). The role of prenatal, obstetric and neonatal factors in the development of autism. Journal of Autism and Developmental Disorders, 41(7), 891–902.CrossRefGoogle Scholar
  18. Falah, N., Torday, J., Quinney, S. K., & Haas, D. M. (2015). Estriol review: Clinical applications and potential biomedical importance. Clinical Research and Trials.  https://doi.org/10.15761/crt.1000109.CrossRefGoogle Scholar
  19. Gillon, T. E. R., Pels, A., Dadelszen, P. V., Macdonell, K., & Magee, L. A. (2014). Hypertensive disorders of pregnancy: A systematic review of international clinical practice guidelines. PLoS ONE.  https://doi.org/10.1371/journal.pone.0113715.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Goebelsmann, U., & Jaffe, R. B. (1971). Oestriol metabolism in pregnant women. Acta Endocrinologica, 66(4), 679–693.CrossRefGoogle Scholar
  21. Goines, P. E., Croen, L. A., Braunschweig, D., Yoshida, C. K., Grether, J., Hansen, R., et al. (2011). Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Molecular Autism, 2, 13.  https://doi.org/10.1186/2040-2392-2-13.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Guller, S., Bulletti, C., Biener, A., & Gurpide, E. (1984). Relative distribution of estrone, estradiol and estriol between fetal and maternal perfusates during perfusions of human term placentas with labelled C19 precursors. Journal of Steroid Biochemistry, 20(4B), 975–979.CrossRefGoogle Scholar
  23. Hammond, G. L. (2011). Diverse roles for sex hormone-binding globulin in reproduction. Biology of Reproduction, 85(3), 431–441.  https://doi.org/10.1095/biolreprod.111.092593.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Helzlsouer, K. J., Alberg, A. J., Gordon, G. B., Longcope, C., Bush, T. L., Hoffman, S. C., et al. (1995). Serum gonadotropins and steroid hormones and the development of ovarian cancer. JAMA, 274(24), 1926–1930.CrossRefGoogle Scholar
  25. Hisle-Gorman, E., Susi, A., Stokes, T., Gorman, G., Erdie-Lalena, C., & Nylund, C. M. (2018). Prenatal, perinatal, and neonatal risk factors of autism spectrum disorder. Pediatric Research, 84(2), 190–198.  https://doi.org/10.1038/pr.2018.23.CrossRefGoogle Scholar
  26. Holl, K., Lundin, E., Kaasila, M., Grankvist, K., Afanasyeva, Y., Hallmans, G., et al. (2008). Effect of long-term storage on hormone measurements in samples from pregnant women: The experience of the Finnish Maternity Cohort. Acta Oncologica (Stockholm, Sweden), 47(3), 406–412.  https://doi.org/10.1080/02841860701592400.CrossRefGoogle Scholar
  27. Howland, M. A., Sandman, C. A., & Glynn, L. M. (2017). Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Review of Endocrinology & Metabolism, 12(50), 321–339.  https://doi.org/10.1080/17446651.2017.1356222.CrossRefGoogle Scholar
  28. Ishimoto, H., & Jaffe, R. B. (2011). Development and function of the human fetal adrenal cortex: A key component in the feto-placental unit. Endocrine Reviews, 32(3), 317–355.  https://doi.org/10.1210/er.2010-0001.CrossRefGoogle Scholar
  29. Jobe, S. O., Tyler, C. T., & Magness, R. R. (2013). Aberrant synthesis, metabolism, and plasma accumulation of circulating estrogens and estrogen metabolites in preeclampsia implications for vascular dysfunction. Hypertension (Dallas, Tex.: 1979), 61(2), 480–487.  https://doi.org/10.1161/hypertensionaha.111.201624.CrossRefGoogle Scholar
  30. Jones, K. L., Croen, L. A., Yoshida, C. K., Heuer, L., Hansen, R., Zerbo, O., et al. (2017). Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Molecular Psychiatry, 22(2), 273–279.  https://doi.org/10.1038/mp.2016.77.CrossRefGoogle Scholar
  31. Kallen, C. B. (2004). Steroid hormone synthesis in pregnancy. Obstetrics and Gynecology Clinics of North America, 31(4), 795–816.  https://doi.org/10.1016/j.ogc.2004.08.009.CrossRefGoogle Scholar
  32. Kinnunen, T. I., Luoto, R., Gissler, M., Hemminki, E., & Hilakivi-Clarke, L. (2004). Pregnancy weight gain and breast cancer risk. BMC Womens Health, 4(1), 7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Krakowiak, P., Walker, C. K., Bremer, A. A., Baker, A. S., Ozonoff, S., Hansen, R. L., et al. (2012). Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics, 129(5), e1121–e1128.  https://doi.org/10.1542/peds.2011-2583.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lawrence, J. M., Contreras, R., Chen, W., & Sacks, D. A. (2008). Trends in the prevalence of preexisting diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999–2005. Diabetes Care, 31(5), 899–904.  https://doi.org/10.2337/dc07-2345.CrossRefGoogle Scholar
  35. Lumey, L. H. (1998). Prenatal oestrogens and breast cancer. Paediatric and Perinatal Epidemiology, 12(4), 361–365.CrossRefGoogle Scholar
  36. Magness, R. R., & Rosenfeld, C. R. (1989). Local and systemic estradiol-17 beta: effects on uterine and systemic vasodilation. The American Journal of Physiology, 256(4 Pt 1), E536–E542.  https://doi.org/10.1152/ajpendo.1989.256.4.E536.CrossRefGoogle Scholar
  37. Malone, F. D., Canick, J. A., Ball, R. H., Nyberg, D. A., Comstock, C. H., Bukowski, R., … First- and second-trimester evaluation of risk (FASTER) research consortium. (2005). First-trimester or second-trimester screening, or both, for Down’s syndrome. The New England Journal of Medicine, 353(19), 2001–2011.  https://doi.org/10.1056/nejmoa043693
  38. Martin, J. N., & Cowan, B. D. (1990). Biochemical assessment and prediction of gestational well-being. Obstetrics and Gynecology Clinics of North America, 17(1), 81–93.Google Scholar
  39. Mesiano, S., & Jaffe, R. B. (1997). Developmental and functional biology of the primate fetal adrenal cortex. Endocrine Reviews, 18(3), 378–403.  https://doi.org/10.1210/edrv.18.3.0304.CrossRefGoogle Scholar
  40. Moisiadis, V. G., & Matthews, S. G. (2014). Glucocorticoids and fetal programming part 1: Outcomes. Nature Reviews Endocrinology, 10(7), 391–402.  https://doi.org/10.1038/nrendo.2014.73.CrossRefGoogle Scholar
  41. Montenegro, Y. H. A., Nascimento, D. Q., Assis, T. O., & Santos-Lopes, S. S. D. (2019). The epigenetics of the hypothalamic-pituitary-adrenal axis in fetal development. Annals of Human Genetics, 83(4), 195–213.  https://doi.org/10.1111/ahg.12306.CrossRefGoogle Scholar
  42. Murphy, V. E., Smith, R., Giles, W. B., & Clifton, V. L. (2006). Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocrine Reviews, 27(2), 141–169.  https://doi.org/10.1210/er.2005-0011.CrossRefGoogle Scholar
  43. Nahum Sacks, K., Friger, M., Shoham-Vardi, I., Abokaf, H., Spiegel, E., Sergienko, R., et al. (2016). Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring. American Journal of Obstetrics and Gynecology, 215(3), 380.e1–380.e7.  https://doi.org/10.1016/j.ajog.2016.03.030.CrossRefGoogle Scholar
  44. Ng, P. C. (2000). The fetal and neonatal hypothalamic–pituitary–adrenal axis. Archives of Disease in Childhood—Fetal and Neonatal Edition, 82(3), F250–F254.  https://doi.org/10.1136/fn.82.3.F250.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Palmer, S. K., Zamudio, S., Coffin, C., Parker, S., Stamm, E., & Moore, L. G. (1992). Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy. Obstetrics and Gynecology, 80(6), 1000–1006.Google Scholar
  46. Pepe, G., & Albrecht, E. (1995). Actions of placental and fetal adrenal steroid hormones in primate pregnancy. Endocrine Reviews, 16(5), 608–645.Google Scholar
  47. Pepe, G. J., Waddell, B. J., & Albrecht, E. D. (1990). Activation of the baboon fetal hypothalamic-pituitary-adrenocortical axis at midgestation by estrogen-induced changes in placental corticosteroid metabolism. Endocrinology, 127(6), 3117–3123.  https://doi.org/10.1210/endo-127-6-3117.CrossRefGoogle Scholar
  48. Petridou, E., Katsouyanni, K., Hsieh, C. C., Antsaklis, A., & Trichopoulos, D. (1992). Diet, pregnancy estrogens and their possible relevance to cancer risk in the offspring. Oncology, 49(2), 127–132.CrossRefGoogle Scholar
  49. Resko, J. A., Pleom, J. G., & Stadelman, H. L. (1975). Estrogens in fetal and maternal plasma of the rhesus monkey. Endocrinology, 97(2), 425–430.  https://doi.org/10.1210/endo-97-2-425.CrossRefGoogle Scholar
  50. Resnik, R., Killam, A. P., Battaglia, F. C., Makowski, E. L., & Meschia, G. (1974). The stimulation of uterine blood flow by various estrogens. Endocrinology, 94(4), 1192–1196.  https://doi.org/10.1210/endo-94-4-1192.CrossRefGoogle Scholar
  51. Reynolds, R. M. (2013). Glucocorticoid excess and the developmental origins of disease: Two decades of testing the hypothesis–2012 Curt Richter Award Winner. Psychoneuroendocrinology, 38(1), 1–11.  https://doi.org/10.1016/j.psyneuen.2012.08.012.CrossRefGoogle Scholar
  52. Shin, Y. Y., Jeong, J. S., Park, M.-N., Lee, J.-E., An, S.-M., Cho, W.-S., et al. (2018). Regulation of steroid hormones in the placenta and serum of women with preeclampsia. Molecular Medicine Reports, 17(2), 2681–2688.  https://doi.org/10.3892/mmr.2017.8165.CrossRefGoogle Scholar
  53. Simpson, E. R., & MacDonald, P. C. (1981). Endocrine physiology of the placenta. Annual Review of Physiology, 43, 163–188.  https://doi.org/10.1146/annurev.ph.43.030181.001115.CrossRefGoogle Scholar
  54. Smith, K. R. (2019). Pedigree and population resource: Utah population database. Retrieved from https://healthcare.utah.edu/huntsmancancerinstitute/research/updb/
  55. Spratt, E. G., Nicholas, J. S., Brady, K. T., Carpenter, L. A., Hatcher, C. R., Meekins, K. A., et al. (2012). Enhanced cortisol response to stress in children in autism. Journal of Autism and Developmental Disorders, 42(1), 75–81.  https://doi.org/10.1007/s10803-011-1214-0.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Strauss, J., Barbieri, R., & Gargiulo, A. (2018). Yen & Jaffe’s reproductive endocrinology (8th ed.). Philadelphia, PA: Elsevier. Retrieved from https://www.elsevier.com/books/yen-and-jaffes-reproductive-endocrinology/9780323479127
  57. Taylor, J. L., & Corbett, B. A. (2014). A review of rhythm and responsiveness of cortisol in individuals with autism spectrum disorders. Psychoneuroendocrinology, 49, 207–228.  https://doi.org/10.1016/j.psyneuen.2014.07.015.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tomarken, A. J., Han, G. T., & Corbett, B. A. (2015). Temporal patterns, heterogeneity, and stability of diurnal cortisol rhythms in children with autism spectrum disorder. Psychoneuroendocrinology, 62, 217–226.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tordjman, S., Anderson, G. M., Kermarrec, S., Bonnot, O., Geoffray, M.-M., Brailly-Tabard, S., et al. (2014). Altered circadian patterns of salivary cortisol in low-functioning children and adolescents with autism. Psychoneuroendocrinology, 50, 227–245.  https://doi.org/10.1016/j.psyneuen.2014.08.010.CrossRefGoogle Scholar
  60. Tulchinsky, D., & Hobel, C. J. (1973). Plasma human chorionic gonadotropin, estrone, estradiol, estriol, progesterone, and 17α-hydroxyprogesterone in human pregnancy. American Journal of Obstetrics and Gynecology, 117(7), 884–893.CrossRefGoogle Scholar
  61. Tulchinsky, D., & Korenman, S. G. (1971). The plasma estradiol as an index of fetoplacental function. Journal of Clinical Investigation, 50(7), 1490–1497.CrossRefPubMedPubMedCentralGoogle Scholar
  62. van de Beek, C., Thijssen, J. H. H., Cohen-Kettenis, P. T., van Goozen, S. H. M., & Buitelaar, J. K. (2004). Relationships between sex hormones assessed in amniotic fluid, and maternal and umbilical cord serum: What is the best source of information to investigate the effects of fetal hormonal exposure? Hormones and Behavior, 46(5), 663–669.  https://doi.org/10.1016/j.yhbeh.2004.06.010.CrossRefGoogle Scholar
  63. Walsh, S. W., Wolf, R. C., & Robinson, J. A. (1979). Estrogens in the uteroovarian, uterine, and peripheral plasma in pregnant rhesus monkeys’. Biology of Reproduction, 20, 606–610.CrossRefGoogle Scholar
  64. Wang, C., Geng, H., Liu, W., & Zhang, G. (2017). Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. Medicine (Baltimore), 96(18), e6696.  https://doi.org/10.1097/MD.0000000000006696.CrossRefGoogle Scholar
  65. Watterberg, Kristi L. (2004). Adrenocortical function and dysfunction in the fetus and neonate. Seminars in Neonatology: SN, 9(1), 13–21.  https://doi.org/10.1016/j.siny.2003.08.003.CrossRefGoogle Scholar
  66. Watterberg, K. L., Scott, S. M., & Naeye, R. L. (1997). Chorioamnionitis, cortisol, and acute lung disease in very low birth weight infants. Pediatrics, 99(2), E6.CrossRefGoogle Scholar
  67. Windham, G. C., Lyall, K., Anderson, M., & Kharrazi, M. (2016). Autism spectrum disorder risk in relation to maternal mid-pregnancy serum hormone and protein markers from prenatal screening in California. Journal of Autism and Developmental Disorders, 46(2), 478–488.  https://doi.org/10.1007/s10803-015-2587-2.CrossRefGoogle Scholar
  68. Yeargin-Allsopp, M., Rice, C., Karapurkar, T., Doernberg, N., Boyle, C., & Murphy, C. (2003). Prevalence of autism in a US metropolitan area. JAMA, 289(1), 49–55.CrossRefGoogle Scholar
  69. Zerbo, O., Traglia, M., Yoshida, C., Heuer, L. S., Ashwood, P., Delorenze, G. N., et al. (2016). Maternal mid-pregnancy C-reactive protein and risk of autism spectrum disorders: The early markers for autism study. Translational Psychiatry, 6(4), e783.  https://doi.org/10.1038/tp.2016.46.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zinke, K., Fries, E., Kliegel, M., Kirschbaum, C., & Dettenborn, L. (2010). Children with high-functioning autism show a normal cortisol awakening response (CAR). Psychoneuroendocrinology, 35(10), 1578–1582.  https://doi.org/10.1016/j.psyneuen.2010.03.009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Deborah A. Bilder
    • 1
    • 5
    Email author
  • M. Sean Esplin
    • 1
    • 2
  • Hilary Coon
    • 1
  • Paul Burghardt
    • 3
  • Erin A. S. Clark
    • 1
  • Alison Fraser
    • 1
    • 4
  • Ken R. Smith
    • 1
    • 4
  • Whitney Worsham
    • 1
  • Katlin Chappelle
    • 3
  • Thomas Rayner
    • 1
  • Amanda V. Bakian
    • 1
  1. 1.University of UtahSalt Lake CityUSA
  2. 2.Intermountain HealthcareSalt Lake CityUSA
  3. 3.Wayne State UniversityDetroitUSA
  4. 4.Huntsman Cancer InstituteSalt Lake CityUSA
  5. 5.Utah Autism Research ProgramUniversity of UtahSalt Lake CityUSA

Personalised recommendations