Advertisement

Brief Report: Atypical Visual Exploration in Autism Spectrum Disorder Cannot be Attributed to the Amygdala

  • Shuo WangEmail author
Brief Report
  • 60 Downloads

Abstract

Prior studies have emphasized the contribution of aberrant amygdala structure and function in social aspects of autism. However, it remains largely unknown whether amygdala dysfunction directly impairs visual attention and exploration as has been observed in people with autism spectrum disorders (ASD). Here, gaze patterns were directly compared between a rare amygdala lesion patient and adults with ASD when they freely viewed static images of complex natural scenes. The amygdala lesion patient showed a gaze pattern that was more similar to controls rather than that of the ASD group, which was independent of image content (social vs. objects) or complexity. This finding was further corroborated by analysis of temporal aspects of the gaze patterns and semantic category analysis. Together, the present results suggest that abnormal visual exploration observed in people with ASD is not likely primarily attributed to the amygdala.

Keywords

Autism spectrum disorder Amygdala Attention Saliency Eye tracking 

Notes

Acknowledgments

The author thank Tim Armstrong for collecting the data, Rene Hurlemann for contributing the amygdala lesion patient, and Ralph Adolphs and Paula Webster for valuable comments. This research was supported by the West Virginia University and the Dana Foundation.

Author Contribution

SW designed experiments, performed research, analyzed data, and wrote the paper.

Supplementary material

10803_2019_4009_MOESM1_ESM.pdf (122 kb)
Supplementary material 1 (PDF 122 kb)

References

  1. Adolphs, R., Gosselin, F., Buchanan, T. W., Tranel, D., Schyns, P., & Damasio, A. R. (2005). A mechanism for impaired fear recognition after amygdala damage. Nature, 433, 68–72.CrossRefGoogle Scholar
  2. Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31, 137–145.CrossRefGoogle Scholar
  3. Ames, C., & Fletcher-Watson, S. (2010). A review of methods in the study of attention in autism. Developmental Review, 30, 52–73.CrossRefGoogle Scholar
  4. Baron-Cohen, S., Ring, H. A., Bullmore, E. T., Wheelwright, S., Ashwin, C., & Williams, S. C. R. (2000). The amygdala theory of autism. Neuroscience and Biobehavioral Reviews, 24, 355–364.CrossRefGoogle Scholar
  5. Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866–874.CrossRefGoogle Scholar
  6. Becker, B., Mihov, Y., Scheele, D., Kendrick, K. M., Feinstein, J. S., et al. (2012). Fear processing and social networking in the absence of a functional amygdala. Biological Psychiatry, 72, 70–77.CrossRefGoogle Scholar
  7. Birmingham, E., Cerf, M., & Adolphs, R. (2011). Comparing social attention in autism and amygdala lesions: effects of stimulus and task condition. Social Neuroscience, 6, 420–435.CrossRefGoogle Scholar
  8. Chawarska, K., Macari, S., & Shic, F. (2013). Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biological Psychiatry, 74, 195–203.CrossRefGoogle Scholar
  9. Dalton, K. M., Nacewicz, B. M., Johnstone, T., Schaefer, H. S., Gernsbacher, M. A., et al. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8, 519–526.CrossRefGoogle Scholar
  10. Dawson, G., Webb, S. J., & McPartland, J. (2005). Understanding the nature of face processing impairment in autism: Insights from behavioral and electrophysiological studies. Developmental Neuropsychology, 27, 403–424.CrossRefGoogle Scholar
  11. Ecker, C., Suckling, J., Deoni, S. C., Lombardo, M. V., Bullmore, E. T., et al. (2012). Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: A multicenter magnetic resonance imaging study. Archives of General Psychiatry, 69, 195–209.CrossRefGoogle Scholar
  12. Feinstein, J. S., Adolphs, R., & Tranel, D. (2016). A tale of survival from the world of patient SM. In D. G. Amaral & R. Adolphs (Eds.), Living without an amygdala (pp. 1–38). New York: Guilford Press.Google Scholar
  13. Gotts, S. J., Simmons, W. K., Milbury, L. A., Wallace, G. L., Cox, R. W., & Martin, A. (2012). Fractionation of social brain circuits in autism spectrum disorders. Brain, 135, 2711–2725.CrossRefGoogle Scholar
  14. Hamann, S. B., Stefanacci, L., Squire, L. R., Adolphs, R., Tranel, D., et al. (1996). Recognizing facial emotion. Nature, 379, 497.CrossRefGoogle Scholar
  15. Happe, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9, 1218–1220.CrossRefGoogle Scholar
  16. Hofer, P. A. (1973). Urbach-Wiethe disease (lipoglycoproteinosis; lipoid proteinosis; hyalinosis cutis et mucosae). A review. Acta Derm Venereol Suppl (Stockh), 53, 1–52.Google Scholar
  17. Kennedy, D. P., D’Onofrio, B. M., Quinn, P. D., Bölte, S., Lichtenstein, P., & Falck-Ytter, T. (2017). Genetic influence on eye movements to complex scenes at short timescales. Current Biology, 27, 3554–3560.CrossRefGoogle Scholar
  18. Kliemann, D., Dziobek, I., Hatri, A., Baudewig, J., & Heekeren, H. R. (2012). The role of the amygdala in atypical gaze on emotional faces in autism spectrum disorders. The Journal of Neuroscience, 32, 9469–9476.CrossRefGoogle Scholar
  19. Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., & Mawhood, L. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19, 185–212.CrossRefGoogle Scholar
  20. Osterling, J., & Dawson, G. (1994). Early recognition of children with autism: A study of first birthday home videotapes. Journal of Autism and Developmental Disorders, 24, 247–257.CrossRefGoogle Scholar
  21. Patin, A., & Hurlemann, R. (2016). Behavioral consequences and compensatory adaptations after early bilateral amygdala damage in monozygotic twins. In D. G. Amaral & R. Adolphs (Eds.), Living without an amygdala (pp. 306–333). New York: The Guilford Press.Google Scholar
  22. Paul, L., Corsello, C., Tranel, D., & Adolphs, R. (2010). Does bilateral damage to the human amygdala produce autistic symptoms? Journal of Neurodevelopmental Disorders, 2, 165–173.CrossRefGoogle Scholar
  23. Philip, R. C. M., Dauvermann, M. R., Whalley, H. C., Baynham, K., Lawrie, S. M., & Stanfield, A. C. (2012). A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neuroscience and Biobehavioral Reviews, 36, 901–942.CrossRefGoogle Scholar
  24. Rice, K., Moriuchi, J. M., Jones, W., & Klin, A. (2012). Parsing heterogeneity in autism spectrum disorders: visual scanning of dynamic social scenes in school-aged children. Journal of the American Academy of Child and Adolescent Psychiatry, 51, 238–248.CrossRefGoogle Scholar
  25. Rutishauser, U., Tudusciuc, O., Wang, S., Mamelak, A. N., Ross, I. B., & Adolphs, R. (2013). Single-neuron correlates of atypical face processing in autism. Neuron, 80, 887–899.CrossRefGoogle Scholar
  26. Santos, A., Chaminade, T., Da Fonseca, D., Silva, C., Rosset, D., & Deruelle, C. (2012). Just another social scene: evidence for decreased attention to negative social scenes in high-functioning autism. Journal of Autism and Developmental Disorders, 42, 1790–1798.CrossRefGoogle Scholar
  27. Sasson, N. J., Elison, J. T., Turner-Brown, L. M., Dichter, G. S., & Bodfish, J. W. (2011). Brief Report: Circumscribed attention in young children with autism. Journal of Autism and Developmental Disorders, 41, 242–247.CrossRefGoogle Scholar
  28. Sasson, N. J., Turner-Brown, L. M., Holtzclaw, T. N., Lam, K. S. L., & Bodfish, J. W. (2008). Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Research, 1, 31–42.CrossRefGoogle Scholar
  29. Schumann, C. M., & Amaral, D. G. (2006). Stereological analysis of amygdala neuron number in autism. The Journal of Neuroscience, 26, 7674–7679.CrossRefGoogle Scholar
  30. Schumann, C. M., Bauman, M. D., & Amaral, D. G. (2011). Abnormal structure or function of the amygdala is a common component of neurodevelopmental disorders. Neuropsychologia, 49, 745–759.CrossRefGoogle Scholar
  31. Schumann, C. M., Hamstra, J., Goodlin-Jones, B. L., Lotspeich, L. J., Kwon, H., et al. (2004). The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. The Journal of Neuroscience, 24, 6392–6401.CrossRefGoogle Scholar
  32. Shic, F., Bradshaw, J., Klin, A., Scassellati, B., & Chawarska, K. (2011). Limited activity monitoring in toddlers with autism spectrum disorder. Brain Research, 1380, 246–254.CrossRefGoogle Scholar
  33. Terburg, D., Morgan, B. E., Montoya, E. R., Hooge, I. T., Thornton, H. B., et al. (2012). Hypervigilance for fear after basolateral amygdala damage in humans. Transl Psychiatry, 2, e115.CrossRefGoogle Scholar
  34. van Honk, J., Terburg, D., Thornton, H., Stein, D. J., & Morgan, B. (2016). Consequences of selective bilateral lesions to the basolateral amygdala in humans. In D. G. Amaral & R. Adolphs (Eds.), Living without an Amygdala (pp. 334–363). New York: Guilford Press.Google Scholar
  35. Wang, S., & Adolphs, R. (2017). Social saliency. In Q. Zhao (Ed.), Computational and cognitive neuroscience of vision (pp. 171–193). Singapore: Springer.CrossRefGoogle Scholar
  36. Wang, S., Jiang, M., Duchesne, X. M., Laugeson Elizabeth, A., Kennedy, D. P., et al. (2015a). Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron, 88, 604–616.CrossRefGoogle Scholar
  37. Wang, S., Tsuchiya, N., New, J., Hurlemann, R., & Adolphs, R. (2015b). Preferential attention to animals and people is independent of the amygdala. Social Cognitive and Affective Neuroscience, 10, 371–380.CrossRefGoogle Scholar
  38. Wang, S., Yu, R., Tyszka, J. M., Zhen, S., Kovach, C., et al. (2017). The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nature Communications, 8, 14821.CrossRefGoogle Scholar
  39. Xu, J., Jiang, M., Wang, S., Kankanhalli, M. S., & Zhao, Q. (2014). Predicting human gaze beyond pixels. Journal of Vision, 14, 28.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biomedical Engineering and Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownUSA

Personalised recommendations