Do Children and Adults with Autism Spectrum Condition Anticipate Others’ Actions as Goal-Directed? A Predictive Coding Perspective

Abstract

An action’s end state can be anticipated by considering the agent’s goal, or simply by projecting the movement trajectory. Theories suggest that individuals with autism spectrum condition (ASC) have difficulties anticipating other’s goal-directed actions, caused by an impairment using prior information. We examined whether children, adolescents and adults with and without ASC visually anticipate another’s action based on its goal or movement trajectory by presenting participants an agent repeatedly taking different paths to reach the same of two targets. The ASC group anticipated the goal and not just the movement pattern, but needed more time to perform goal-directed anticipations. Results are in line with predictive coding accounts, claiming that the use of prior information is impaired in ASC.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adam, M., Reitenbach, I., Papenmeier, F., Gredebäck, G., Elsner, C., & Elsner, B. (2016). Goal saliency boosts infants’ action prediction for human manual actions, but not for mechanical claws. Infant Behavior and Development, 44, 29–37. https://doi.org/10.1016/j.infbeh.2016.05.001.

    Article  PubMed  Google Scholar 

  2. Barnes, K. A., Howard Jr, J. H., Howard, D. V., Gilotty, L., Kenworthy, L., Gaillard, W. D., & Vaidya, C. J. (2008). Intact implicit learning of spatial context and temporal sequences in childhood autism spectrum disorder. Neuropsychology, 22(5), 563. https://doi.org/10.1037/0894-4105.22.5.563.

    Article  PubMed  Google Scholar 

  3. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5–17. https://doi.org/10.1023/A:1005653411471.

    Article  PubMed  Google Scholar 

  4. Bölte, S., & Poustka, F. (2006). Fragebogen zur sozialen Kommunikation (FSK). Bern: Huber.

    Google Scholar 

  5. Bölte, S., & Poustka, F. (2008). Skala zur Erfassung sozialer Reaktivität (SRS). Bern: Huber.

    Google Scholar 

  6. Braukmann, R., Ward, E., Hessels, R. S., Bekkering, H., Buitelaar, J. K., & Hunnius, S. (2018). Action prediction in 10-month-old infants at high and low familial risk for autism spectrum disorder. Research in Autism Spectrum Disorders, 49, 34–46. https://doi.org/10.1016/j.rasd.2018.02.004.

    Article  Google Scholar 

  7. Brisson, J., Warreyn, P., Serres, J., Foussier, S., & Adrien-Louis, J. (2012). Motor anticipation failure in infants with autism: A retrospective analysis of feeding situations. Autism: The International Journal of Research and Practice, 16(4), 420–429. https://doi.org/10.1177/1362361311423385.

    Article  Google Scholar 

  8. Brock, J. (2012). Alternative Bayesian accounts of autistic perception: Comment on Pellicano and Burr. Trends in Cognitive Sciences, 16(12), 573–574. https://doi.org/10.1016/j.tics.2012.10.005.

    Article  PubMed  Google Scholar 

  9. Chambon, V., Farrer, C., Pacherie, E., Jacquet, P. O., Leboyer, M., & Zalla, T. (2017). Reduced sensitivity to social priors during action prediction in adults with autism spectrum disorders. Cognition, 160, 17–26. https://doi.org/10.1016/j.cognition.2016.12.005.

    Article  PubMed  Google Scholar 

  10. Charlton, R. A., Barrick, T. R., Markus, H. S., & Morris, R. G. (2009). Theory of mind associations with other cognitive functions and brain imaging in normal aging. Psychology and Aging, 24(2), 338. https://doi.org/10.1037/a0015225.

    Article  PubMed  Google Scholar 

  11. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477.

    Article  PubMed  Google Scholar 

  12. Cusack, J. P., Williams, J. H., & Neri, P. (2015). Action perception is intact in autism spectrum disorder. Journal of Neuroscience, 35(5), 1849–1857. https://doi.org/10.1523/JNEUROSCI.4133-13.2015.

    Article  PubMed  Google Scholar 

  13. Diersch, N., Jones, A. L., & Cross, E. S. (2016). The timing and precision of action prediction in the aging brain. Human Brain Mapping, 37(1), 54–66. https://doi.org/10.1002/hbm.23012.

    Article  PubMed  Google Scholar 

  14. Falck-Ytter, T. (2010). Young children with autism spectrum disorder use predictive eye movements in action observation. Biology Letters, 6(3), 375–378. https://doi.org/10.1098/rsbl.2009.0897.

    Article  PubMed  Google Scholar 

  15. Freitag, C. M., Retz-Junginger, P., Retz, W., Seitz, C., Palmason, H., Meyer, J., … von Gontard, A. (2007). Evaluation der deutschen Version des Autismus-Spektrum-Quotienten (AQ)—die Kurzversion. Zeitschrift für Klinische Psychologie und Psychotherapie, 36(4), 280–289. https://doi.org/10.1026/1616-3443.36.4.280.

    Article  Google Scholar 

  16. Frith, U., Morton, J., & Leslie, A. M. (1991). The cognitive basis of a biological disorder: Autism. Trends in Neurosciences, 14(10), 433–438. https://doi.org/10.1016/0166-2236(91)90041-R.

    Article  PubMed  Google Scholar 

  17. Geurts, H. M., & Vissers, M. E. (2012). Elderly with autism: Executive functions and memory. Journal of Autism and Developmental Disorders, 42(5), 665–675. https://doi.org/10.1007/s10803-011-1291-0.

    Article  PubMed  Google Scholar 

  18. Goldberg, M. C., Lasker, A. G., Zee, D. S., Garth, E., Tien, A., & Landa, R. J. (2002). Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism. Neuropsychologia, 40(12), 2039–2049. https://doi.org/10.1016/S0028-3932(02)00059-3.

    Article  PubMed  Google Scholar 

  19. Gomot, M., & Wicker, B. (2012). A challenging, unpredictable world for people with autism spectrum disorder. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 83(2), 240–247. https://doi.org/10.1016/j.ijpsycho.2011.09.017.

    Article  Google Scholar 

  20. Gordon, B., & Stark, S. (2007). Procedural learning of a visual sequence in individuals with autism. Focus on Autism and other Developmental Disabilities, 22(1), 14–22. https://doi.org/10.1177/10883576070220010201.

    Article  Google Scholar 

  21. Gredebäck, G., Stasiewicz, D., Falck-Ytter, T., Rosander, K., & von Hofsten, C. (2009). Action type and goal type modulate goal-directed gaze shifts in 14-month-old infants. Developmental Psychology, 45(4), 1190. https://doi.org/10.1037/a0015667.

    Article  PubMed  Google Scholar 

  22. Haker, H., Schneebeli, M., & Stephan, K. E. (2016). Can Bayesian theories of autism spectrum disorder help improve clinical practice? Frontiers in Psychiatry, 7, 107. https://doi.org/10.3389/fpsyt.2016.00107.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hamilton, A. F. D. C. (2009). Research review: Goals, intentions and mental states: Challenges for theories of autism. Journal of Child Psychology and Psychiatry, 50(8), 881–892. https://doi.org/10.1111/j.1469-7610.2009.02098.x.

    Article  PubMed  Google Scholar 

  24. Henrichs, I., Elsner, C., Elsner, B., & Gredebäck, G. (2012). Goal salience affects infants’ goal-directed gaze shifts. Frontiers in Psychology, 3, 391. https://doi.org/10.3389/fpsyg.2012.00391.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hughes, C. (1996). Brief report: Planning problems in autism at the level of motor control. Journal of Autism and Developmental Disorders, 26(1), 99–107. https://doi.org/10.1007/BF02276237.

    Article  PubMed  Google Scholar 

  26. Jensen, V. K., & Sinclair, L. V. (2002). Treatment of autism in young children: Behavioral intervention and applied behavior analysis. Infants & Young Children, 14(4), 42–52.

    Article  Google Scholar 

  27. Kourkoulou, A., Leekam, S. R., & Findlay, J. M. (2012). Implicit learning of local context in autism spectrum disorder. Journal of Autism and Developmental Disorders, 42(2), 244–256. https://doi.org/10.1007/s10803-011-1237-6.

    Article  PubMed  Google Scholar 

  28. Krogh-Jespersen, S., Kaldy, Z., Valadez, A. G., Carter, A. S., & Woodward, A. L. (2018). Goal prediction in 2-year-old children with and without autism spectrum disorder: An eye-tracking study. Autism research: Official Journal of the International Society for Autism Research, 11(6), 870–882. https://doi.org/10.1002/aur.1936.

    Article  Google Scholar 

  29. Krogh-Jespersen, S., Liberman, Z., & Woodward, A. L. (2015). Think fast! The relationship between goal prediction speed and social competence in infants. Developmental Science, 18(5), 815–823. https://doi.org/10.1111/desc.12249.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision account of autism. Frontiers in Human Neuroscience, 8, 302. https://doi.org/10.3389/fnhum.2014.00302.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lehrl, S. (2005). Mehrfachwahl-Wortschatz-Intelligenztest MWT- B. Balingen: Spitta Verlag.

    Google Scholar 

  32. Lever, A. G., & Geurts, H. M. (2016). Age-related differences in cognition across the adult lifespan in autism spectrum disorder. Autism Research, 9(6), 666–676. https://doi.org/10.1002/aur.1545.

    Article  PubMed  Google Scholar 

  33. Lorch, R. F., & Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 149–157. https://doi.org/10.1037/0278-7393.16.1.149.

    Article  PubMed  Google Scholar 

  34. Mostofsky, S. H., Goldberg, M. C., Landa, R. J., & Denckla, M. B. (2000). Evidence for a deficit in procedural learning in children and adolescents with autism: Implications for cerebellar contribution. Journal of the International Neuropsychological Society, 6(7), 752–759.

    Article  Google Scholar 

  35. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43. https://doi.org/10.1007/s10803-005-0040-7.

    Article  PubMed  Google Scholar 

  36. Murphy, P., Brady, N., Fitzgerald, M., & Troje, N. F. (2009). No evidence for impaired perception of biological motion in adults with autistic spectrum disorders. Neuropsychologia, 47(14), 3225–3235. https://doi.org/10.1016/j.neuropsychologia.2009.07.026.

    Article  PubMed  Google Scholar 

  37. Paulus, M. (2012). Action mirroring and action understanding: An ideomotor and attentional account. Psychological Research Psychologische Forschung, 76, 760–767. https://doi.org/10.1007/s00426-011-0385-9.

    Article  PubMed  Google Scholar 

  38. Paulus, M., Hunnius, S., van Wijngaard, C., Vrins, S., van Rooij, I., & Bekkering, H. (2011). The role of frequency information and teleological reasoning in infants’ and adults’ action prediction. Developmental Psychology, 47, 976–983. https://doi.org/10.1037/a0023785.

    Article  PubMed  Google Scholar 

  39. Paulus, M., Schuwerk, T., Sodian, B., & Ganglmayer, K. (2017). Children’s and adults’ use of verbal information to visually anticipate others’ actions: A study on explicit and implicit social-cognitive processing. Cognition, 160, 145–152. https://doi.org/10.1016/j.cognition.2016.12.013.

    Article  PubMed  Google Scholar 

  40. Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504–510. https://doi.org/10.1016/j.tics.2012.08.009.

    Article  PubMed  Google Scholar 

  41. Petermann, F. (2013). WAIS-IV. Deutschsprachige Adaption der Wechsler Adult Intelligence Scale–4. Version. Frankfurt: Pearson Assessment.

    Google Scholar 

  42. Petermann, F., & Petermann, U. (2007). Hamburg-Wechsler Intelligenztest für Kinder—IV (HAWIK-IV). Bern: Huber.

    Google Scholar 

  43. Powell, P. S., Klinger, L. G., & Klinger, M. R. (2017). Patterns of age-related cognitive differences in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 47(10), 3204–3219. https://doi.org/10.1007/s10803-017-3238-6.

    Article  PubMed  Google Scholar 

  44. Roser, M. E., Aslin, R. N., McKenzie, R., Zahra, D., & Fiser, J. (2015). Enhanced visual statistical learning in adults with autism. Neuropsychology, 29(2), 163–172. https://doi.org/10.1037/neu0000137.

    Article  PubMed  Google Scholar 

  45. Ruffman, T. (2014). To belief or not belief: Children’s theory of mind. Developmental Review, 34, 265–293. https://doi.org/10.1016/j.dr.2014.04.001.

    Article  Google Scholar 

  46. Rutter, M., Bailey, A., & Lord, C. (2001). Social Communication Questionnaire (SCQ). Los Angeles: Western Psychological Services.

    Google Scholar 

  47. Schmitz, C., Martineau, J., Barthélémy, C., & Assaiante, C. (2003). Motor control and children with autism: Deficit of anticipatory function? Neuroscience Letters, 348(1), 17–20. https://doi.org/10.1016/S0304-3940(03)00644-X.

    Article  PubMed  Google Scholar 

  48. Schuwerk, T., & Paulus, M. (2015). Preschoolers, adolescents, and adults visually anticipate an agent’s efficient action; but only after having observed it frequently. The Quarterly Journal of Experimental Psychology, 69(4), 800–816. https://doi.org/10.1080/17470218.2015.1061028.

    Article  PubMed  Google Scholar 

  49. Schuwerk, T., & Paulus, M. (2018). Action prediction in autism. In F. Volkmar (Ed.), Encyclopedia of autism spectrum disorders. New York: Springer.

    Google Scholar 

  50. Schuwerk, T., Sodian, B., & Paulus, M. (2016). Cognitive mechanisms underlying action prediction in children and adults with autism spectrum condition. Journal of Autism and Developmental Disorders, 46(12), 3623–3639. https://doi.org/10.1007/s10803-016-2899-x.

    Article  PubMed  Google Scholar 

  51. Schwartz, S., & Susser, E. (2011). The use of well controls: An unhealthy practice in psychiatric research. Psychological Medicine, 41(6), 1127–1131. https://doi.org/10.1017/S0033291710001595.

    Article  PubMed  Google Scholar 

  52. Scott-Van Zeeland, A. A., McNealy, K., Wang, A. T., Sigman, M., Bookheimer, S. Y., & Dapretto, M. (2010). No neural evidence of statistical learning during exposure to artificial languages in children with autism spectrum disorders. Biological Psychiatry, 68(4), 345–351. https://doi.org/10.1016/j.biopsych.2010.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Senju, A., Southgate, V., White, S., & Frith, U. (2009). Mindblind eyes: An absence of spontaneous theory of mind in Asperger syndrome. Science, 325(5942), 883–885. https://doi.org/10.1126/science.1176170.

    Article  PubMed  Google Scholar 

  54. Sinha, P., Kjelgaard, M. M., Gandhi, T. K., Tsourides, K., Cardinaux, A. L., Pantazis, D.,.. . Held, R. M. (2014). Autism as a disorder of prediction. Proceedings of the National Academy of Sciences of the United States of America, 111(42), 15220–15225. https://doi.org/10.1073/pnas.1416797111.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tewolde, F. G., Bishop, D. V. M., & Manning, C. (2017). Visual motion prediction and verbal false memory performance in autistic children. Autism Research: Official Journal of the International Society for Autism Research, 11(3), 509–518. https://doi.org/10.1002/aur.1915.

    Article  Google Scholar 

  56. Uithol, S., & Paulus, M. (2014). What do infants understand of others’ action? A theoretical account of early social cognition. Psychological Research Psychologische Forschung, 78(5), 609–622. https://doi.org/10.1007/s00426-013-0519-3.

    Article  PubMed  Google Scholar 

  57. Van de Cruys, S., Evers, K., Van der Hallen, R., Van Eylen, L., Boets, B., de-Wit, L., & Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121(4), 649. https://doi.org/10.1037/a0037665.

    Article  PubMed  Google Scholar 

  58. Verhaeghen, P., & Cerella, J. (2002). Aging, executive control, and attention: A review of meta-analyses. Neuroscience & Biobehavioral Reviews, 26(7), 849–857. https://doi.org/10.1016/S0149-7634(02)00071-4.

    Article  Google Scholar 

  59. von Hofsten, C., Kochukhova, O., & Rosander, K. (2007). Predictive tracking over occlusions by 4-month-old infants. Developmental Science, 10, 625–640. https://doi.org/10.1111/j.1467-7687.2007.00604.x.

    Article  Google Scholar 

  60. von Hofsten, C., Uhlig, H., Adell, M., & Kochukhova, O. (2009). How children with autism look at events. Research in Autism Spectrum Disorders, 3(2), 556–569. https://doi.org/10.1016/j.rasd.2008.12.003.

    Article  Google Scholar 

  61. Wechsler, D. (2003). Wechsler Intelligence Scale for children-WISCIV. San Antonio: Psychological Corporation.

    Google Scholar 

  62. Wechsler, D. (2008). Wechsler Adult Intelligence Scale-fourth edition (WAIS-IV). San Antonio: Pearson.

    Google Scholar 

  63. Weiß, R. H. (2006). Grundintelligenztest Skala 2—Revision (CFT 20-R). Göttingen: Hogrefe.

    Google Scholar 

  64. Woodward, A. L. (1998). Infants selectively encode the goal object of an actor’s reach. Cognition, 69(1), 1–34. https://doi.org/10.1016/S0010-0277(98)00058-4.

    Article  PubMed  Google Scholar 

  65. World Health Organization (WHO). (1993). ICD-10: The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. Geneva.

  66. Zalla, T., Labruyere, N., & Georgieff, N. (2006). Goal-directed action representation in autism. Journal of Autism and Developmental Disorders, 36(4), 527–540. https://doi.org/10.1007/s10803-006-0092-3.

    Article  PubMed  Google Scholar 

  67. Zalla, T., Labruyère, N., Clément, A., & Georgieff, N. (2010). Predicting ensuing actions in children and adolescents with autism spectrum disorders. Experimental Brain Research, 201(4), 809–819. https://doi.org/10.1007/s00221-009-2096-7.

    Article  PubMed  Google Scholar 

  68. Zeger, S. L., & Liang, K. Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics. https://doi.org/10.2307/2531248.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded by a grant from the Volkswagenstiftung to B.S. and the German Research Foundation (DFG, Nr. PA 2302/6-1) to M.P. We thank all participants and their families for participating in this study. We are grateful to Tabea Schädel for her help in data acquisition and Emily Redekop for proofreading the manuscript. We thank Martin Sobanski (Heckscher-Klinikum gGmbH) and Martina Schabert (autkom) for their help with recruiting participants.

Author information

Affiliations

Authors

Contributions

KG participated in design, performed data- and statistical analysis, investigation and writing of the original draft, as well as coordination and participation in revision and editing. TS participated in design and data collection, supervision, as well as revising and editing the manuscript. BS participated in revising and editing, and funding acquisition. MP conceived of the study, participation in design, supervision, revising and editing the manuscript, as well as funding acquisition.

Corresponding author

Correspondence to Kerstin Ganglmayer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganglmayer, K., Schuwerk, T., Sodian, B. et al. Do Children and Adults with Autism Spectrum Condition Anticipate Others’ Actions as Goal-Directed? A Predictive Coding Perspective. J Autism Dev Disord 50, 2077–2089 (2020). https://doi.org/10.1007/s10803-019-03964-8

Download citation

Keywords

  • Autism spectrum condition
  • Goal anticipation
  • Cognitive processes
  • Social cognition
  • Predictive coding
  • Eye-tracking