Journal of Autism and Developmental Disorders

, Volume 49, Issue 2, pp 788–793 | Cite as

Brief Report: Typical Auditory-Motor and Enhanced Visual-Motor Temporal Synchronization in Adults with Autism Spectrum Disorder

  • Rosanna Edey
  • Rebecca Brewer
  • Geoffrey Bird
  • Clare PressEmail author
Brief Report


The perception of subsecond durations in adults with autism spectrum disorder (hereafter ‘autism’; n = 25 Experiment 1, n = 21 Experiment 2) and matched typical adults (n = 24 Experiment 1, n = 22 Experiment 2) was examined by requiring participants to perform an action in time with auditory (Experiment 1) or visual (Experiment 2) events. Individuals with autism performed comparably to typical participants in the auditory task and exhibited less temporal error relative to their typical counterparts in the visual task. These findings suggest that perception of subsecond intervals is intact in autism, if not enhanced. Results support recent Bayesian theories of enhanced visual-perceptual precision in people with autism, and extend empirical support into the precision of subsecond temporal estimates.


Time perception Sensorimotor coordination Audition Vision 



We are grateful to Sophie Sowden for help with testing. CP was funded by a Leverhulme Trust Grant Number RPG-2016-105 and GB was funded by the Baily Thomas Charitable Fund.

Author Contributions

All authors contributed to the design of the study and were involved in writing the manuscript. RE and RB collected the data. RE analysed the data. CP supervised the work.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10803_2018_3725_MOESM1_ESM.doc (42 kb)
Supplementary material 1 (DOC 41 KB)


  1. Allman, M. J., DeLeon, I. G., & Wearden, J. H. (2011). Psychophysical assessment of timing in individuals with autism. American Journal on Intellectual and Developmental Disabilities, 116(2), 165–178. Scholar
  2. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders: DSM-IV (4th ed.). Washington, D.C: American Psychiatric Association.Google Scholar
  3. Ames, C., & Fletcher-Watson, S. (2010). A review of methods in the study of attention in autism. Developmental Review, 30(1), 52–73. Scholar
  4. Baranek, G. T. (2002). Efficacy of sensory and motor interventions for children with autism. Journal of Autism and Developmental Disorders, 32(5), 397–422. Scholar
  5. Baron-Cohen, S., Campbell, R., Karmiloff-Smith, A., Grant, J., & Walker, J. (1995). Are children with autism blind to the mentalistic significance of the eyes? British Journal of Developmental Psychology, 13(4), 379–398. Scholar
  6. Bonnel, A., Mottron, L., Peretz, I., Trudel, M., Gallun, E., & Bonnel, A.-M. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226–235. Scholar
  7. Brenner, L. A., Shih, V. H., Colich, N. L., Sugar, C. A., Bearden, C. E., & Dapretto, M. (2015). Time reproduction performance is associated with age and working memory in high-functioning youth with autism spectrum disorder. Autism Research, 8(1), 29–37. Scholar
  8. Edey, R., Yon, D., Cook, J., Dumontheil, I., & Press, C. (2017). Our own action kinematics predict the perceived affective states of others. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1263–1268. Scholar
  9. Falter, C. M., & Noreika, V. (2011). Interval timing deficits and abnormal cognitive development. Frontiers in Integrative Neuroscience. Scholar
  10. Falter, C. M., Noreika, V., Wearden, J. H., & Bailey, A. J. (2012). More consistent, yet less sensitive: Interval timing in autism spectrum disorders. The Quarterly Journal of Experimental Psychology, 65(11), 2093–2107. Scholar
  11. Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4(11), e1000211. Scholar
  12. Gil, S., Chambres, P., Hyvert, C., Fanget, M., & Droit-Volet, S. (2012). Children with autism spectrum disorders have “the working raw material” for time perception. PLoS ONE, 7(11), e49116. Scholar
  13. Gowen, E., & Miall, R. C. (2005). Behavioural aspects of cerebellar function in adults with Asperger syndrome. The Cerebellum, 4(4), 279–289. Scholar
  14. Grondin, S. (1993). Duration discrimination of empty and filled intervals marked by auditory and visual signals. Perception & Psychophysics, 54(3), 383–394. Scholar
  15. Grondin, S., Meilleur-Wells, G., Ouellette, C., & Macar, F. (1998). Sensory effects on judgments of short time-intervals. Psychological Research Psychologische Forschung, 61(4), 261–268. Scholar
  16. Grossberg, S., & Myers, C. W. (2000). The resonant dynamics of speech perception: Interword integration and duration-dependent backward effects. Psychological Review, 107(4), 735–767. Scholar
  17. Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25. Scholar
  18. Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends in Cognitive Sciences, 12(7), 273–280. Scholar
  19. Jones, C. R. G., Happé, F., Baird, G., Simonoff, E., Marsden, A. J. S., Tregay, J., et al. (2009). Auditory discrimination and auditory sensory behaviors in autism spectrum disorders. Neuropsychologia, 47(13), 2850–2858. Scholar
  20. Karaminis, T., Cicchini, G. M., Neil, L., Cappagli, G., Aagten-Murphy, D., Burr, D., & Pellicano, E. (2016). Central tendency effects in time interval reproduction in autism. Scientific Reports. Scholar
  21. Keehn, B., Westerfield, M., Müller, R.-A., & Townsend, J. (2017). Autism, attention, and alpha oscillations: An electrophysiological study of attentional capture. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(6), 528–536. Scholar
  22. Kirby, A. V., Dickie, V. A., & Baranek, G. T. (2015). Sensory experiences of children with autism spectrum disorder: In their own words. Autism, 19, 316–326.CrossRefGoogle Scholar
  23. Krumhuber, E., Manstead, A. S. R., Cosker, D., Marshall, D., Rosin, P. L., & Kappas, A. (2007). Facial dynamics as indicators of trustworthiness and cooperative behavior. Emotion, 7(4), 730–735. Scholar
  24. Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision account of autism. Frontiers in Human Neuroscience. Scholar
  25. Lord, C., Rutter, M., DiLavore, P., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule: ADOS-2 (2nd ed.). Torrance: Western Psychological Services.Google Scholar
  26. Maister, L., & Plaisted-Grant, K. C. (2011). Time perception and its relationship to memory in autism spectrum conditions. Developmental Science, 14(6), 1311–1322. Scholar
  27. Mangels, J. A., Ivry, R. B., & Shimizu, N. (1998). Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cognitive Brain Research, 7(1), 15–39. Scholar
  28. Martin, J. S., Poirier, M., & Bowler, D. M. (2010). Brief report: Impaired temporal reproduction performance in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 40(5), 640–646. Scholar
  29. Matthews, W. J., & Meck, W. H. (2014). Time perception: The bad news and the good. Wiley Interdisciplinary Reviews: Cognitive Science, 5(4), 429–446. Scholar
  30. Meissner, K., & Wittmann, M. (2011). Body signals, cardiac awareness, and the perception of time. Biological Psychology, 86(3), 289–297. Scholar
  31. Mosconi, M. W., & Sweeney, J. A. (2015). Sensorimotor dysfunctions as primary features of autism spectrum disorders. Science China Life Sciences, 58(10), 1016–1023. Scholar
  32. Mostofsky, S. H., Goldberg, M. C., Landa, R. J., & Denckla, M. B. (2000). Evidence for a deficit in procedural learning in children and adolescents with autism: Implications for cerebellar contribution. Journal of the International Neuropsychological Society, 6(7), 752–759. Scholar
  33. Palmer, C. J., Lawson, R., & Hohwy, J. (2017). Bayesian approaches to autism: Towards volatility, action, and behavior. Psychological Bulletin, 143, 521–542. Scholar
  34. Pellicano, E., & Burr, D. (2012). When the world becomes “too real”: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504–510. Scholar
  35. Remington, A., & Fairnie, J. (2017). A sound advantage: Increased auditory capacity in autism. Cognition, 166, 459–465. Scholar
  36. Repp, B., Liberman, A., Eccardt, T., & Pesetsky, D. (1978). Perceptual integration of acoustic cues for stop, fricative, and affricate manner. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 621–637.Google Scholar
  37. Shi, Z., Church, R. M., & Meck, W. H. (2013). Bayesian optimization of time perception. Trends in Cognitive Sciences, 17(11), 556–564. Scholar
  38. Sinclair, J. (2013). Why I dislike “person first” language. Autonomy, the Critical Journal of Interdisciplinary Autism Studies, 1(2), 1–2.Google Scholar
  39. Szelag, E., Kowalska, J., Galkowski, T., & Pöppel, E. (2004). Temporal processing deficits in high-functioning children with autism. British Journal of Psychology, 95(3), 269–282. Scholar
  40. Wallace, G. L., & Happe, F. (2008). Time perception in autism spectrum disorders. Research in Autism Spectrum Disorders, 2, 447–455.CrossRefGoogle Scholar
  41. Wimpory, D., Nicholas, B., & Nash, S. (2002). Social timing, clock genes and autism: A new hypothesis. Journal of Intellectual Disability Research, 46(4), 352–358. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychological Sciences, BirkbeckUniversity of LondonLondonUK
  2. 2.Department of Psychology, Royal HollowayUniversity of LondonLondonUK
  3. 3.Department of Experimental PsychologyUniversity of OxfordOxfordUK

Personalised recommendations