Advertisement

Superior Visual Search and Crowding Abilities Are Not Characteristic of All Individuals on the Autism Spectrum

  • Ebony Lindor
  • Nicole Rinehart
  • Joanne Fielding
Original Paper

Abstract

Individuals with Autism Spectrum Disorder (ASD) often excel on visual search and crowding tasks; however, inconsistent findings suggest that this ‘islet of ability’ may not be characteristic of the entire spectrum. We examined whether performance on these tasks changed as a function of motor proficiency in children with varying levels of ASD symptomology. Children with high ASD symptomology outperformed all others on complex visual search tasks, but only if their motor skills were rated at, or above, age expectations. For the visual crowding task, children with high ASD symptomology and superior motor skills exhibited enhanced target discrimination, whereas those with high ASD symptomology but poor motor skills experienced deficits. These findings may resolve some of the discrepancies in the literature.

Keywords

Autism Attention Enhanced perception Visual search Crowding Motor skills 

Notes

Acknowledgments

We would like to thank our participants and their families for kindly offering to participate in this study. We are also grateful to the paediatricians at Melbourne Children’s Clinic for assisting with recruitment. This paper has been prepared as part of a doctoral thesis.

Author Contributions

EL and JF designed the study. NR advised on participant-related processes and assisted EL with recruitment. EL collected the data and performed data analysis. All authors were involved in manuscript drafting and approved the final manuscript.

Funding

The work was supported by doctoral research funding from the School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Clayton, VIC, 3800, Australia.

Compliance with Ethical Standards

Conflict of interest

NR has received funding from the Ferrero Group, Australia and Moose Toys. Ferrero Group, Australia and Moose Toys had no role in this research including the collection, analysis, and interpretation of data; in writing of the manuscript; and in the decision to submit the article for publication. NR has received speaker honorarium from Novartis (2002), Pfzier (2006) and Nutricia (2007). JF has also received research grants for Novartis (2015) and Sanofi-Genzyme (2017). NR is a Director of the Amaze Board (Autism Victoria). EL, NR and JF each declares that she has no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Akshoomoff, N. A., & Courchesne, E. (1992). A new role for the cerebellum in cognitive operations. Behavioural Neuroscience, 106(5), 731–738.CrossRefGoogle Scholar
  2. Akshoomoff, N. A., & Courchesne, E. (1994). ERP evidence for a shifting attention deficit in patients with damage to the cerebellum. Journal of Cognitive Neuroscience, 6(4), 388–399.CrossRefPubMedGoogle Scholar
  3. Almeida, R. A., Dickinson, J. E., Maybery, M. T., Badcock, J. C., & Badcock, D. R. (2010). Visual search performance in the autism spectrum II: The radial frequency search task with additional segmentation cues. Neuropsychologia, 48(14), 4117–4124.CrossRefPubMedGoogle Scholar
  4. Almeida, R. A., Dickinson, J. E., Maybery, M. T., Badcock, J. C., & Badcock, D. R. (2013). Visual search targeting either local or global perceptual processes differs as a function of autistic-like traits in the typically developing population. Journal of Autism and Developmental Disorders, 43, 1272–1286.CrossRefPubMedGoogle Scholar
  5. APA (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Publishing.Google Scholar
  6. Ashwin, C., Wheelwright, S., & Baron-Cohen, S. (2006). Finding a face in the crowd: Testing the anger superiority effect in asperger syndrome. Brain and Cognition, 61(1), 78–95.CrossRefPubMedGoogle Scholar
  7. Asperger, H. (1938). Das psychisch abnorme Kind. Wiener Klinische Wochenschrift, 49, 1314–1317.Google Scholar
  8. Asperger, H. (1944). Die ‘autistischen Psychopathen’ im Kindesalter. Archiv fur Psychiatrie und Nervenkrankheiten, 117, 76–136.CrossRefGoogle Scholar
  9. Baldassi, S., Pei, F., Megna, N., Recupero, G., Viespoli, M., Igliozzi, R., et al. (2009). Search superiority in autism within but not outside the crowding regime. Vision Research, 49(16), 2151–2156.CrossRefPubMedGoogle Scholar
  10. Baumann, O., Borra, R. J., Bower, J. M., Cullen, K. E., Habas, C., Ivry, R. B., et al. (2015). Consensus paper: The role of the cerebellum in perceptual processes. Cerebellum, 14, 197–220.CrossRefPubMedGoogle Scholar
  11. Bayliss, A. P., & Kritikos, A. (2011). Brief report: Perceptual load and the autism spectrum in typically developed individuals. Journal of Autism and Developmental Disorders, 41, 1573–1578.CrossRefPubMedGoogle Scholar
  12. Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014). Pupillometry reveals a mechanism for the autism spectrum disorder (ASD) advantage in visual tasks. Nature Scientific Reports, 4, 1–5.Google Scholar
  13. Blaser, E., Eglington, L., & Kaldy, Z. (2012) Toddlers with ASD are better at visual search without trying harder: A pupillometric study. In Annual Meeting of the Vision Sciences Society, Naples, FL, 2012.Google Scholar
  14. Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226, 177–178.CrossRefPubMedGoogle Scholar
  15. Brock, J., Xu, J. Y., & Brooks, K. R. (2011). Individual differences in visual search: Relationship to autistic traits, discrimination thresholds, and speed of processing. Perception, 40(6), 739–742.CrossRefPubMedGoogle Scholar
  16. Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80(3), 807–815.CrossRefPubMedGoogle Scholar
  17. Caron, M. J., Mottron, L., Berthiaume, C., & Dawson, M. (2006). Cognitive mechanisms, specificity and neural underpinnings of visuospatial peaks in autism. Brain, 129(Pt 7), 1789–1802.CrossRefPubMedGoogle Scholar
  18. Chakravarthi, R., & Cavanagh, P. (2007). Temporal properties of the polarity advantage effect in crowding. Journal of Vision, 7(2), 1–13.CrossRefPubMedGoogle Scholar
  19. Chakravarthi, R., & Cavanagh, P. (2009). Bilateral field advantage in visual crowding. Vision Research, 49(13), 1638–1646.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Conners, K. C. (2008). Conners (3rd ed.). Toronto: Multi-Health Systems.Google Scholar
  21. Constable, P. (2010). Crowding and visual search in high functioning adults with autism spectrum disorder. Clinical Optometry, 2, 93–103.CrossRefGoogle Scholar
  22. Constantino, J. N., & Gruber, C. P. (2012). Social responsiveness scale-second edition (SRS-2). Torrance, CA: Western Psychological Services.Google Scholar
  23. Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48(3), 497–507.CrossRefPubMedGoogle Scholar
  24. Donovan, A. P., & Basson, M. A. (2017). The neuroanatomy of autism: A developmental perspective. Journal of Anatomy, 230(1), 4–15.CrossRefPubMedGoogle Scholar
  25. Fielding, J., Corben, L., Cremer, P., Millist, L., White, O., & Delatycki, M. (2010). Disruption to higher order processes in Friedreich ataxia. Neuropsychologia, 48(1), 235–242.CrossRefPubMedGoogle Scholar
  26. Freyberg, J., Robertson, C. E., & Baron-Cohen, S. (2016). Typical magnitude and spatial extent of crowding in autism. Journal of Vision, 16(5), 1–10.CrossRefGoogle Scholar
  27. Green, D., Chairman, T., Pickles, A., Chandler, S., Loucas, T., Simonoff, E., et al. (2009). Impairment in movement skills of children with autistic spectrum disorders. Developmental Medicine and Child Neurology, 51(4), 311–316.CrossRefPubMedGoogle Scholar
  28. Grubb, M. A., Behrmann, M., Egan, E., Minshew, N. J., Heeger, D. J., & Carrasco, M. (2013). Exogenous spatial attention: Evidence for intact functioning in adults with autism spectrum disorder. Journal of Vision, 13(14), 1–13.CrossRefGoogle Scholar
  29. Hampson, D. R., & Blatt, G. J. (2015). Autism spectrum disorders and neuropathology of the cerebellum. Frontiers in Neuroscience, 9, 1–16.CrossRefGoogle Scholar
  30. Harrison, W. J., Mattingley, J. B., & Remington, R. W. (2013). Eye movement targets are released from visual crowding. The Journal of Neuroscience, 33(7), 2927–2933.CrossRefPubMedGoogle Scholar
  31. Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: The Guildford Press.Google Scholar
  32. Henderson, S. E., Sugden, D. A., & Barnett, A. L. (2007). Movement assessment battery for children-2: Movement ABC-2: Examiner’s manual. São Paulo: Pearson.Google Scholar
  33. Hocking, D. R., Corben, L. A., Fielding, J., Cremer, P. D., Millist, L., White, O. B., et al. (2014). Saccade reprogramming in Friedreich ataxia reveals impairments in the cognitive control of saccadic eye movement. Brain and Cognition, 87, 161–167.CrossRefPubMedGoogle Scholar
  34. Hocking, D. R., Fielding, J., Corben, L. A., Cremer, P. D., Millist, L., White, O. B., et al. (2010). Ocular motor fixation deficits in Friedreich ataxia. Cerebellum, 9(3), 411–418.CrossRefPubMedGoogle Scholar
  35. Hokkanen, L. S. K., Kauranen, V., Roine, R. O., Salonen, O., & Kotila, M. (2006). Subtle cognitive deficits after cerebellar infarcts. European Journal of Neurology, 13, 161–170.CrossRefPubMedGoogle Scholar
  36. Iarocci, G., & Armstrong, K. (2014). Age-related changes in conjunctive visual search in children with and without ASD. Autism Research, 7(2), 229–236.CrossRefPubMedGoogle Scholar
  37. Iarocci, G., Burack, J. A., Shore, D. I., Mottron, L., & Enns, J. T. (2006). Global-local visual processing in high functioning children with autism: Structural vs. implicit task biases. Journal of Autism and Developmental Disorders, 36(1), 117–129.CrossRefPubMedGoogle Scholar
  38. Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology, 43(3), 171–216.CrossRefPubMedGoogle Scholar
  39. Jarrold, C., Gilchrist, I. D., & Bender, A. (2005). Embedded figures detection in autism and typical development: Preliminary evidence of a double dissociation in relationships with visual search. Developmental Science, 8(4), 344–351.CrossRefPubMedGoogle Scholar
  40. Johnson, B. P., Rinehart, N. J., Papadopoulos, N., Tonge, B., Millist, L., White, O., et al. (2012). A closer look at visually guided saccades in autism and Asperger’s disorder. Frontiers in Integrative Neuroscience, 6, 99.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Johnson, B. P., Rinehart, N. J., White, O., Millist, L., & Fielding, J. (2013). Saccade adaptation in autism and Asperger’s disorder. Neuroscience, 243, 76–87.CrossRefPubMedGoogle Scholar
  42. Joseph, R. M., Keehn, B., Connolly, C., Wolfe, J. M., & Horowitz, T. S. (2009). Why is visual search superior in autism spectrum disorder? Developmental Science, 12(6), 1083–1096.CrossRefPubMedGoogle Scholar
  43. Kaldy, Z., Giserman, I., Carter, A. S., & Blaser, E. (2016). The mechanisms underlying the ASD advantage in visual search. Journal of Autism and Developmental Disorders.  https://doi.org/10.1007/s10803-013-1957-x.PubMedPubMedCentralGoogle Scholar
  44. Kaldy, Z., Kraper, C., Carter, A. S., & Blaser, E. (2011). Toddlers with autism spectrum disorder are more successful at visual search than typically developing toddlers. Developmental Science, 14(5), 980–988.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.Google Scholar
  46. Keehn, B., Muller, R. A., & Townsend, J. (2013). Atypical attentional networks and the emergence of autism. Neuroscience and Biobehavioral Reviews, 37(2), 164–183.CrossRefPubMedGoogle Scholar
  47. Kéïta, L., Mottron, L., & Bertone, A. (2010). Far visual acuity is unremarkable in autism: Do we need to focus on crowding? Autism Research, 3(6), 333–341.CrossRefPubMedGoogle Scholar
  48. Levy, S. E., Giarelli, E., Lee, L.-C., Schieve, L. A., Kirby, R. S., Cunniff, C., et al. (2010). Autism spectrum disorder and co-occurring developmental, psychiatric, and medical conditions among children in multiple populations of the United States. Journal of Developmental and Behavioral Pediatrics, 31, 267–275.CrossRefPubMedGoogle Scholar
  49. Liss, M., Saulnier, C., Fein, D., & Kinsbourne, M. (2006). Sensory and attention abnormalities in autistic spectrum disorders. Autism, 10(2), 155–172.CrossRefPubMedGoogle Scholar
  50. Milne, E., Dunn, S. A., Freeth, M., & Rosas-Martinez, L. (2013). Visual search performance is predicted by the degree to which selective attention to features modulates the ERP between 350 and 600 ms. Neuropsychologia, 51(6), 1109–1118.CrossRefPubMedGoogle Scholar
  51. Nieto, A., Correia, R., de Nóbreega, E., Montón, F., Hess, S., & Barroso, J. (2012). Cognition in friedreich ataxia. Cerebellum, 11, 834–844.CrossRefPubMedGoogle Scholar
  52. O’Halloran, C. J., Kinsella, G. J., & Storey, E. (2012). The cerebellum and neuropsychological functioning: A critical review. Journal of Clinical and Experimental Neuropsychology, 34(1), 35–56.CrossRefPubMedGoogle Scholar
  53. O’Riordan, M. (2000). Superior modulation of activation levels of stimulus representations does not underlie superior discrimination in autism. Cognition, 77, 81–96.CrossRefPubMedGoogle Scholar
  54. O’Riordan, M. (2004). Superior visual search in adults with autism. Autism, 8(3), 229–248.CrossRefPubMedGoogle Scholar
  55. O’Riordan, M., & Plaisted, K. (2001). Enhanced discrimination in autism. The Quarterly Journal of Experimental Psychology, 54(4), 961–979.CrossRefPubMedGoogle Scholar
  56. Oldfield, R. C. (1971). The assessment and analysis of handedness: The edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMedGoogle Scholar
  57. Papadopoulos, N., McGinley, J., Tonge, B., Bradshaw, J., Saunders, K., Murphy, A., et al. (2012). Motor proficiency and emotional/behavioural disturbance in autism and Asperger’s disorder: Another piece of the neurological puzzle? Autism, 16(6), 627–640.CrossRefPubMedGoogle Scholar
  58. Pellicano, E., Smith, A. D., Cristino, F., Hood, B. M., Briscoe, J., & Gilchrist, I. D. (2011). Children with autism are neither systematic nor optimal foragers. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 421–426.CrossRefPubMedGoogle Scholar
  59. Plaisted, K., O’Riordan, M., & Baron-Cohen, S. (1998). Enhanced visual search for a conjunctive target in autism: A research note. Journal of Child Psychology and Psychiatry, 39(5), 777–783.CrossRefPubMedGoogle Scholar
  60. Ramnani, N. (2012). Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum, 11(2), 366–383.CrossRefPubMedGoogle Scholar
  61. Remington, A., Swettenham, J., Campbell, R., & Coleman, M. (2009). Selective attention and perceptual load in autism spectrum disorder. Psychological Science, 20(11), 1388–1393.CrossRefPubMedGoogle Scholar
  62. Remington, A., Swettenham, J. G., & Lavie, N. (2012). Lightening the load: Perceptual load impairs visual detection in typical adults but not in autism. Journal of Abnormal Psychology, 121(2), 544–551.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rinehart, N. J., Bellgrove, M. A., Tonge, B. J., Brereton, A. V., Howells-Rankin, D., & Bradshaw, J. L. (2006a). An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: Further evidence for a motor planning deficit. Journal of Autism and Developmental Disorders, 36(6), 757–767.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rinehart, N. J., Bradshaw, J. L., Brereton, A. V., & Tonge, B. (2001a). Movement preparation in high-functioning autism and asperger disorder, a serial choice reaction time task involving motor reprogramming. Journal of Autism and Developmental Disorders, 31(1), 79–88.CrossRefPubMedGoogle Scholar
  65. Rinehart, N. J., Bradshaw, J. L., Moss, S. A., Brereton, A. V., & Tonge, B. (2000). Atypical interference of local detail on global processing in high-functioning autism and Asperger’s disorder. Journal of Child Psychology and Psychiatry, 41(6), 769–778.CrossRefPubMedGoogle Scholar
  66. Rinehart, N. J., Bradshaw, J. L., Moss, S. A., Brereton, A. V., & Tonge, B. J. (2001b). A deficit in shifting attention present in high-functioning autism but not Asperger’s disorder. Autism, 5(1), 67–80.CrossRefPubMedGoogle Scholar
  67. Rinehart, N. J., Bradshaw, J. L., Moss, S. A., Brereton, A. V., & Tonge, B. J. (2008). Brief report: Inhibition of return in young people with autism and Asperger’s disorder. Autism, 12(3), 249–260.CrossRefPubMedGoogle Scholar
  68. Rinehart, N. J., Tonge, B., Bradshaw, J. L., Iansek, R., Enticott, P. G., & McGinley, J. (2006b). Gait function in high-functioning autism and Asperger’s disorder: Evidence for basal-ganglia and cerebellar involvement? European Child and Adolescent Psychiatry, 15(5), 256–264.CrossRefPubMedGoogle Scholar
  69. Rinehart, N. J., Tonge, B., Brereton, A., & Bradshaw, J. (2010). Attentional blink in young people with high-functioning autism and Asperger’s disorder. Autism, 14(1), 47–66.CrossRefPubMedGoogle Scholar
  70. Robertson, C. E., Kravitz, D. J., Freyberg, J., Baron-Cohen, S., & Baker, C. I. (2013). Tunnel vision: Sharper gradient of spatial attention in autism. The Journal of Neuroscience, 33(16), 6776–6781.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ronconi, L., Gori, S., Ruffino, M., Molteni, M., & Facoetti, A. (2013). Zoom-out attentional impairment in children with autism spectrum disorder. Cortex, 49(4), 1025–1033.CrossRefPubMedGoogle Scholar
  72. Sattler, J. M., & Dumont, R. (2004). Assessment of children: WISC-IV and WPPSI-III supplement. San Diego: Sattler.Google Scholar
  73. Schmitz, C., & Rezaie, P. (2008). The neuropathology of autism: Where do we stand? Neuropathology and Applied Neurobiology, 34(1), 4–11.PubMedGoogle Scholar
  74. Shirama, A., Kato, N., & Kashino, M. (2017). When do individuals with autism spectrum disorder show superiority in visual search? Autism, 21(8), 942–951.CrossRefPubMedGoogle Scholar
  75. Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313–332.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Stanley-Cary, C., Rinehart, N. J., Tonge, B., White, O., & Fielding, J. (2011). Greater disruption to control of voluntary saccades in autistic disorder than Asperger’s disorder: Evidence for greater cerebellar involvement in autism? Cerebellum, 10(1), 70–80.CrossRefPubMedGoogle Scholar
  77. Stoodley, C. J. (2016). The cerebellum and neurodevelopmental disorders. Cerebellum, 15(1), 34–37.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tomlinson, S. P., Davis, N. J., & Bracewell, R. M. (2013). Brain stimulation studies of non-motor cerebellar function: A systematic review. Neuroscience and Biobehavioral Reviews, 37(5), 766–789.CrossRefPubMedGoogle Scholar
  79. Treisman, A. M., & Gelade, G. (1980). Feature integration theory of attention. Cognitive Psychology, 12, 97–136.CrossRefPubMedGoogle Scholar
  80. Wang, S. S., Kloth, A. D., & Badura, A. (2014). The cerebellum, sensitive periods, and autism. Neuron, 83(3), 518–532.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wollmann, T., Barroso, J., Monton, F., & Nieto, A. (2002). Neuropsychological test performance of patients with Friedreich’s ataxia. Journal of Clinical and Experimental Neuropsychology, 24(5), 677–686.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Psychological Sciences and Monash Institute of Cognitive and Clinical NeurosciencesMonash UniversityClaytonAustralia
  2. 2.Deakin University Geelong, Deakin Child Study Centre, School of Psychology, Faculty of HealthGeelongAustralia
  3. 3.Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneAustralia

Personalised recommendations