Biofeedback-Based, Videogame Balance Training in Autism

Abstract

The present study examined the effects of a visual-based biofeedback training on improving balance challenges in autism spectrum disorder (ASD). Twenty-nine youth with ASD (7–17 years) completed an intensive 6-week biofeedback-based videogame balance training. Participants exhibited training-related balance improvements that significantly accounted for postural-sway improvements outside of training. Participants perceived the training as beneficial and enjoyable. Significant moderators of training included milder stereotyped and ritualistic behaviors and better starting balance. Neither IQ nor BMI moderated training. These results suggest that biofeedback-based balance training is associated with balance improvements in youth with ASD, most robustly in those with less severe repetitive behaviors and better starting balance. The training was perceived as motivating, further suggesting its efficacy and likelihood of use.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ajzenman, H. F., Standeven, J. W., & Shurtleff, T. L. (2013). Effect of hippotherapy on motor control, adaptive behaviors, and participation in children with autism spectrum disorder: A pilot study. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 67(6), 653–663. doi:10.5014/ajot.2013.008383.

    Article  Google Scholar 

  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  3. Bartlett, H. L., Ting, L. H., & Bingham, J. T. (2014). Accuracy of force and center of pressure measures of the Wii Balance Board. Gait & Posture, 39(1), 224–228. doi:10.1016/j.gaitpost.2013.07.010.

    Article  Google Scholar 

  4. Bodfish, J. W., Symons, F. J., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: Comparisons to mental retardation. Journal of Autism and Developmental Disorders, 30(3), 237–243.

    Article  PubMed  Google Scholar 

  5. Boyd, B. A., Baranek, G. T., Sideris, J., Poe, M. D., Watson, L. R., Patten, E., & Miller, H. (2010). Sensory features and repetitive behaviors in children with autism and developmental delays. Autism Research, 3(2), 78–87. doi:10.1002/aur.124.

    PubMed  PubMed Central  Google Scholar 

  6. Bruininks, R. H., & Bruininks, B. B. (2005). Bruininks-Oseretsky test of motor proficiency (2edn.). Minneapolis, MN: Pearson Assessment.

    Google Scholar 

  7. Chang, C.-H., Wade, M. G., Stoffregen, T. A., Hsu, C.-Y., & Pan, C.-Y. (2010). Visual tasks and postural sway in children with and without autism spectrum disorders. Research in Developmental Disabilities, 31(6), 1536–1542. doi:10.1016/j.ridd.2010.06.003.

    Article  PubMed  Google Scholar 

  8. Cheldavi, H., Shakerian, S., Boshehri, S. N. S., & Zarghami, M. (2014). The effects of balance training intervention on postural control of children with autism spectrum disorder: Role of sensory information. Research in Autism Spectrum Disorders, 8(1), 8–14.

    Article  Google Scholar 

  9. Chen, F.-C., & Tsai, C.-L. (2016). A light fingertip touch reduces postural sway in children with autism spectrum disorders. Gait & Posture, 43, 137–140. doi:10.1016/j.gaitpost.2015.09.012.

    Article  Google Scholar 

  10. Clark, R. A., Bryant, A. L., Pua, Y., McCrory, P., Bennell, K., & Hunt, M. (2010). Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait & Posture, 31(3), 307–310. doi:10.1016/j.gaitpost.2009.11.012.

    Article  Google Scholar 

  11. Constantino, J. (2002). The social responsiveness scale. Los Angeles, CA: Western Psychological Services.

    Google Scholar 

  12. Constantino, J., Davis, S. A., Todd, R. D., Schindler, M. K., Gross, M. M., Brophy, S. L., et al. (2003). Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33(4), 427–433

    Article  PubMed  Google Scholar 

  13. Dickinson, K., & Place, M. (2014). A randomised control trial of the impact of a computer-based activity programme upon the fitness of children with autism. Autism Research and Treatment. doi:10.1155/2014/419653.

    PubMed  PubMed Central  Google Scholar 

  14. Doumas, M., McKenna, R., & Murphy, B. (2016). Postural control deficits in Autism Spectrum Disorder: The role of sensory integration. Journal of Autism and Developmental Disorders, 46(3), 853–861. doi:10.1007/s10803-015-2621-4.

    Article  PubMed  Google Scholar 

  15. Getchell, N., Miccinello, D., Blom, M., Morris, L., & Szaroleta, M. (2012). Comparing energy expenditure in adolescents with and without Autism while playing Nintendo(®) Wii(™) games. Games for Health Journal, 1(1), 58–61. doi:10.1089/g4h.2011.0019.

    Article  PubMed  Google Scholar 

  16. Haswell, C. C., Izawa, J., Dowell, L. R., Mostofsky, S. H., & Shadmehr, R. (2009). Representation of internal models of action in the autistic brain. Nature Neuroscience, 12(8), 970–972. doi:10.1038/nn.2356.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lam, K. S. L., & Aman, M. G. (2007). The repetitive behavior scale-revised: Independent validation in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(5), 855–866. doi:10.1007/s10803-006-0213-z.

    Article  PubMed  Google Scholar 

  18. Lim, Y. H., Partridge, K., Girdler, S., & Morris, S. L. (2017). Standing postural control in individuals with autism spectrum disorder: Systematic review and meta-analysis. Journal of Autism and Developmental Disorders, 47(7), 2238–2253. doi:10.1007/s10803-017-3144-y.

    Article  PubMed  Google Scholar 

  19. Lord, C., Rutter, M., DiLavore, P., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule–2nd edition. (ADOS-2). Los Angeles, CA: Western Psychological Corporation.

    Google Scholar 

  20. Mazurek, M. O., Shattuck, P. T., Wagner, M., & Cooper, B. P. (2012). Prevalence and correlates of screen-based media use among youths with autism spectrum disorders. Journal of Autism and Developmental Disorders, 42(8), 1757–1767. doi:10.1007/s10803-011-1413-8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Memari, A. H., Ghanouni, P., Shayestehfar, M., Ziaee, V., & Moshayedi, P. (2014). Effects of visual search vs. auditory tasks on postural control in children with autism spectrum disorder. Gait & Posture, 39(1), 229–234. doi:10.1016/j.gaitpost.2013.07.012.

    Article  Google Scholar 

  22. Minshew, N. J., Sung, K., Jones, B. L., & Furman, J. M. (2004). Underdevelopment of the postural control system in autism. Neurology, 63(11), 2056–2061. doi:10.1212/01.WNL.0000145771.98657.62.

    Article  PubMed  Google Scholar 

  23. Molloy, C. A., Dietrich, K. N., & Bhattacharya, A. (2003). Postural stability in children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 33(6), 643–652. doi:10.1023/B:JADD.0000006001.00667.4c.

    Article  PubMed  Google Scholar 

  24. Monteiro-Junior, R. S., Ferreira, A. S., Puell, V. N., Lattari, E., Machado, S., Vaghetti, C. A. O., & Silva, E. B. (2015). Wii Balance Board: Reliability and clinical use in assessment of balance in healthy elderly women. CNS & Neurological Disorders- Drug Targets, 14(9), 1165–1170.

    Article  Google Scholar 

  25. Morris, S. L., Foster, C. J., Parsons, R., Falkmer, M., Falkmer, T., & Rosalie, S. M. (2015). Differences in the use of vision and proprioception for postural control in autism spectrum disorder. Neuroscience, 307, 273–280. doi:10.1016/j.neuroscience.2015.08.040.

    Article  PubMed  Google Scholar 

  26. R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.

  27. Radonovich, K. J., Fournier, K. A., & Hass, C. J. (2013). Relationship between postural control and restricted, repetitive behaviors in autism spectrum disorders. Frontiers in Integrative Neuroscience, 7, 28. doi:10.3389/fnint.2013.00028.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Smoot Reinert, S., Jackson, K., & Bigelow, K. (2015). Using posturography to examine the immediate effects of vestibular therapy for children with Autism Spectrum Disorders: A feasibility study. Physical & Occupational Therapy in Pediatrics, 35(4), 365–380. doi:10.3109/01942638.2014.975313.

    Article  Google Scholar 

  29. Tarakci, D., Ersoz Huseyinsinoglu, B., Tarakci, E., & Razak Ozdincler, A. (2016). Effects of Nintendo Wii-Fit(®) video games on balance in children with mild cerebral palsy. Pediatrics International: Official Journal of the Japan Pediatric Society, 58(10), 1042–1050. doi:10.1111/ped.12942.

    Article  Google Scholar 

  30. Tarakci, D., Ozdincler, A. R., Tarakci, E., Tutuncuoglu, F., & Ozmen, M. (2013). Wii-based balance therapy to improve balance function of children with cerebral palsy: A pilot study. Journal of Physical Therapy Science, 25(9), 1123–1127. doi:10.1589/jpts.25.1123.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Travers, B. G., Powell, P. S., Klinger, L. G., & Klinger, M. R. (2013). Motor difficulties in autism spectrum disorder: Linking symptom severity and postural stability. Journal of Autism and Developmental Disorders, 43(7), 1568–1583. doi:10.1007/s10803-012-1702-x.

    Article  PubMed  Google Scholar 

  32. Wechsler, D., & Hsiao-pin, C. (2011). WASI-II: Wechsler abbreviated scale of intelligence. San Antonio, TX: Pearson.

    Google Scholar 

  33. Weimer, A. K., Schatz, A. M., Lincoln, A., Ballantyne, A. O., & Trauner, D. A. (2001). “Motor” impairment in Asperger syndrome: Evidence for a deficit in proprioception. Journal of Developmental and Behavioral Pediatrics, 22(2), 92–101.

    Article  PubMed  Google Scholar 

  34. Winter, D. A. (2009). Biomechanics and motor control of human movement. New York, NY: John Wiley & Sons.

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brain and Behavior Research Foundation’s NARSAD Young Investigator Award [to BGT], the Hartwell Foundation’s Individual Biomedical Award [to BGT], the University of Wisconsin System’s WiSys Technology Foundation [to LM], and the Eunice Kennedy Shriver National Institute of Child Health and Human Development [P30 HD003352 and U54 HD090256 to the Waisman Center and T32 HD007489]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Child Health & Development or the National Institutes of Health. We thank those at Prentice Technologies for designing the video game. We thank Sarah Crook, Nikki Erickson, Aubrey Fisher, Isabelle Gallagher, Robyn Geist, Larissa Hacker, Lauren Hoover, Sarah Jacquot, Jenna Lent, Kristin Lillie, Sagui Lutman, Nicole Marczak, Claire Melin, Molly Pearcy, Carli Peters, Kirstin Peters, Kailey Sabel, Sean Sekelsky, Elise Suttner, Josh Tarnoff, Desiree Taylor, Jake Tenaglia, David Turner, Amin Tmimi, and Catie Van Sloun for their contributions to this project. We sincerely thank all the families who spent the 6 weeks participating in this study.

Author information

Affiliations

Authors

Contributions

BGT conceived of the study. BGT, AHM, AE, and LAM designed the game and participated in the design of the study. BGT coordinated and drafted the manuscript. BGT, DD, AHM, and LAM participated in the design, analysis, and interpretation of the data. KM, OD, AG, and CE participated in the design and coordination of the study, performed the measurements, and assisted in drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Brittany G. Travers.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This project was approved the University of Wisconsin-Madison Education and Social/Behavioral Science Institutional Review Board (protocol #2014-1248) and Health Sciences Institutional Review Board (protocol #1014-1499).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 106 KB)

Supplementary material 2 (MP4 2700 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Travers, B.G., Mason, A.H., Mrotek, L.A. et al. Biofeedback-Based, Videogame Balance Training in Autism. J Autism Dev Disord 48, 163–175 (2018). https://doi.org/10.1007/s10803-017-3310-2

Download citation

Keywords

  • Postural stability
  • Motor
  • Video game
  • Technology-based interventions