Advertisement

Journal of Autism and Developmental Disorders

, Volume 48, Issue 1, pp 137–150 | Cite as

Association Between Air Pollution Exposure, Cognitive and Adaptive Function, and ASD Severity Among Children with Autism Spectrum Disorder

  • Tara Kerin
  • Heather VolkEmail author
  • Weiyan Li
  • Fred Lurmann
  • Sandrah Eckel
  • Rob McConnell
  • Irva Hertz-Picciotto
Original Paper

Abstract

Prenatal exposure to air pollution has been associated with autism spectrum disorder (ASD) risk but no study has examined associations with ASD severity or functioning. Cognitive ability, adaptive functioning, and ASD severity were assessed in 327 children with ASD from the Childhood Autism Risks from Genetics and the Environment study using the Mullen Scales of Early Learning (MSEL), the Vineland Adaptive Behavior Scales (VABS), and the Autism Diagnostic Observation Schedule calibrated severity score. Estimates of nitrogen dioxide (NO2), particulate matter (PM2.5 and PM10), ozone, and near-roadway air pollution were assigned to each trimester of pregnancy and first year of life. Increasing prenatal and first year NO2 exposures were associated with decreased MSEL and VABS scores. Increasing PM10 exposure in the third trimester was paradoxically associated with improved performance on the VABS. ASD severity was not associated with air pollution exposure.

Keywords

Autism spectrum disorder Air pollution Vineland adaptive behavioral scale Mullen scales of early learning Cognitive impairments 

Notes

Funding

This study was funded by the National Institute of Environmental Health Sciences (ES013678, ES019002, ES015359, ES11269), the National Institute of Mental Health (MH073124), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD079125), and the Environmental Protection Agency (829388, 833292).

Author Contributions

TK made substantial contributions to study conception and design, analysis and interpretation of data, drafting the article, revising the article critically for important intellectual content, and gave final approval of the version to be published. HV and RM made substantial contributions to study conception and design, interpretation of data, revising the article critically for important intellectual content, and gave final approval of the version to be published. WL and SE made substantial contriubtions to analysis and interpretation of the data, revising the article critically for important intellectual content, and gave final approval of the version to be published. FL made substantial contributions to acquisition of data, interpretation of data, revising the article critically for important intellectual content, and gave final approval of the version to be published. IHP made substantial contributions to acquisition of data, study conception and design, interpretation of data, revising the article critically for important intellectual content, and gave final approval of the version to be published.

Compliance with Ethical Standards

Conflict of interest

Fred Lurmann is employed by Sonoma Technology Inc., Petaluma, CA. Rob McConnell and Fred Lurmann have received support from an air quality violations settlement agreement between the South Coast Air Quality Management District, a California state regulatory agency, and BP. Drs. Volk and Eckel received travel funds from Autism Speaks to present at an academic conference. The other authors declare no competing financial interests.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and within the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants in the study.

Supplementary material

10803_2017_3304_MOESM1_ESM.pdf (353 kb)
Supplementary material 1 (PDF 353 KB)

References

  1. Allen, J. L., et al. (2014). Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environmental Health Perspectives, 122, 939–945. doi: 10.1289/ehp.1307984.PubMedPubMedCentralGoogle Scholar
  2. Allen, J. L., et al. (2015). Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology. doi: 10.1016/j.neuro.2015.12.014.Google Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, Fifth Edition, Text Revision. Arlington, VA: American Psychiatric Publishing.CrossRefGoogle Scholar
  4. Becerra, T. A., Wilhelm, M., Olsen, J., Cockburn, M., & Ritz, B. (2013). Ambient air pollution and autism in Los Angeles county, California. Environmental Health Perspectives, 121, 380–386. doi: 10.1289/ehp.1205827.PubMedGoogle Scholar
  5. Block, M. L., & Calderon-Garciduenas, L. (2009). Air pollution: mechanisms of neuroinflammation and CNS disease. Trends in Neurosciences, 32, 506–516.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Calabrese, V., et al. (2005). Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. Journal of the Neurological Sciences 233, 145–162. doi: 10.1016/j.jns.2005.03.012.CrossRefPubMedGoogle Scholar
  7. Chen, J. C., et al. (2015). Ambient air pollution and neurotoxicity on brain structure: Evidence from women’s health initiative memory study. Annals of Neurology, 78, 466–476. doi: 10.1002/ana.24460.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Christensen, D. L., et al. (2016). Prevalence and characteristics of Autism spectrum disorder among children aged 8 years–autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR. Surveillance Summaries: Morbidity and Mortality Weekly Report. Surveillance Summaries/CDC, 65, 1–23. doi: 10.15585/mmwr.ss6503a1.CrossRefGoogle Scholar
  9. Correia, C., et al. (2006). Brief report: High frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. Journal of Autism and Developmental Disorders, 36, 1137–1140. doi: 10.1007/s10803-006-0138-6.CrossRefPubMedGoogle Scholar
  10. Costa, L. G., Cole, T. B., Coburn, J., Chang, Y. C., Dao, K., & Roque, P. (2014). Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. Biomed Research International. doi: 10.1155/2014/736385.Google Scholar
  11. Costa, L. G., Cole, T. B., Coburn, J., Chang, Y. C., Dao, K., & Roqué, P. J. (2015). Neurotoxicity of traffic-related air pollution. Neurotoxicology. doi: 10.1016/j.neuro.2015.11.008.PubMedCentralGoogle Scholar
  12. Dominici, F., Zeger, S. L., & Samet, J. M. (2000). A measurement error model for time-series studies of air pollution and mortality. Biostatistics. doi: 10.1093/biostatistics/1.2.157.PubMedGoogle Scholar
  13. Ema, M., Naya, M., Horimoto, M., & Kato, H. (2013). Developmental toxicity of diesel exhaust: a review of studies in experimental animals. Reproductive Toxicology, 42, 1–17. doi: 10.1016/j.reprotox.2013.06.074.CrossRefPubMedGoogle Scholar
  14. Farahani, H., & Hasan, M. (1990). Effect of NO2 on lipids and lipid peroxidation in the CNS of the guinea-pig. Pharmacology and Toxicology, 66, 146–149.CrossRefPubMedGoogle Scholar
  15. Farahani, H., & Hasan, M. (1992). Nitrogen dioxide induced changes in level of free fatty acids, triglyceride, esterified fatty acid, ganglioside and lipase activity in the guinea pig brain. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 27, 53–71. doi: 10.1080/03601239209372767.CrossRefPubMedGoogle Scholar
  16. Flores-Pajot, M. C., Ofner, M., Do, M. T., Lavigne, E., & Villeneuve, P. J. (2016). Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: A review and meta-analysis. Environmental Research, 151, 763–776. doi: 10.1016/j.envres.2016.07.030.CrossRefPubMedGoogle Scholar
  17. Gaugler, T., et al. (2014). Most genetic risk for autism resides with common variation. Nature Genetics, 46, 881–885. doi: 10.1038/ng.3039.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Genkinger, J. M., et al. (2015). Prenatal polycyclic aromatic hydrocarbon (PAH) exposure, antioxidant levels and behavioral development of children ages 6–9. Environmental Research. doi: 10.1016/j.envres.2015.03.017.PubMedPubMedCentralGoogle Scholar
  19. Giulivi, C., et al. (2010). Mitochondrial dysfunction in autism. JAMA: The Journal of the American Medical Association, 304, 2389–2396. doi: 10.1001/jama.2010.1706.CrossRefPubMedGoogle Scholar
  20. Goh, S., Dong, Z., Zhang, Y., DiMauro, S., & Peterson, B. S. (2014). Mitochondrial dysfunction as a neurobiological subtype of autism spectrum disorder: evidence from brain imaging. JAMA Psychiatry, 71, 665–671 doi: 10.1001/jamapsychiatry.2014.179.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gong, T., et al. (2016). Perinatal exposure to traffic-related air pollution and autism spectrum disorders. Environmental Health Perspectives. doi: 10.1289/EHP118.PubMedCentralGoogle Scholar
  22. Gotham, K., Pickles, A., & Lord, C. (2009). Standardizing ADOS scores for a measure of severity in autism spectrum disorders. Journal of Autism and Developmental disorders, 39, 693–705. doi: 10.1007/s10803-008-0674-3.CrossRefPubMedGoogle Scholar
  23. Gotham, K., Pickles, A., & Lord, C. (2012). Trajectories of autism severity in children using standardized ADOS scores. Pediatrics, 130, e1278-84. doi: 10.1542/peds.2011-3668.CrossRefPubMedGoogle Scholar
  24. Guxens, M., et al. (2012a). Prenatal exposure to residential air pollution and infant mental development: modulation by antioxidants and detoxification factors. Environmental Health Perspectives, 120, 144–149. doi: 10.1289/ehp.1103469.CrossRefPubMedGoogle Scholar
  25. Guxens, M., et al. (2012b). Prenatal exposure to residential air pollution and infant mental development: modulation by antioxidants and detoxification factors. Environmental Health Perspectives, 120, 144–149. doi: 10.1289/ehp.1103469.CrossRefPubMedGoogle Scholar
  26. Guxens, M., et al. (2014). Air pollution during pregnancy and childhood cognitive and psychomotor development: six European birth cohorts. Epidemiology 25, 636–647 doi: 10.1097/EDE.0000000000000133.CrossRefPubMedGoogle Scholar
  27. Guxens, M., & Sunyer, J. (2012). A review of epidemiological studies on neuropsychological effects of air pollution. Swiss Medical Weekly: Official Journal of the Swiss Society of Infectious Diseases, the Swiss Society of Internal Medicine, the Swiss Society of Pneumology, 141, w13322. doi: 10.4414/smw.2011.13322.Google Scholar
  28. Hertz-Picciotto, I., Croen, L. A., Hansen, R., Jones, C. R., van de Water, J., & Pessah, I. N. (2006). The CHARGE study: an epidemiologic investigation of genetic and environmental factors contributing to autism. Environmental Health Perspectives, 114, 1119–1125.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hu, J., Zhang, H., Ying, Q., Chen, S., Vandenberghe, F., & Kleeman, M. J. (2015). Long-term particulate matter modeling for health effect studies in California – Part 1: Model performance on temporal and spatial variations. Atmospheric Chemistry and Physics, 15, 3445–3461.CrossRefGoogle Scholar
  30. Huerta, M., Bishop, S. L., Duncan, A., Hus, V., & Lord, C. (2012). Application of DSM-5 criteria for autism spectrum disorder to three samples of children with DSM-IV diagnoses of pervasive developmental disorders. The American Journal of Psychiatry, 169, 1056–1064. doi: 10.1176/appi.ajp.2012.12020276.CrossRefPubMedGoogle Scholar
  31. Hus, V., Gotham, K., & Lord, C. (2012). Standardizing ADOS domain scores: separating severity of social affect and restricted and repetitive behaviors. Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-012-1719-1.Google Scholar
  32. Jedrychowski, W. A., et al. (2015). Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environmental Science and Pollution Research International, 22, 3631–3639. doi: 10.1007/s11356-014-3627-8.CrossRefPubMedGoogle Scholar
  33. Jung, C. R., Lin, Y. T., & Hwang, B. F. (2013). Air pollution and newly diagnostic autism spectrum disorders: a population-based cohort study in Taiwan. PLoS ONE, 8, e75510. doi: 10.1371/journal.pone.0075510.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kalkbrenner, A. E., et al. (2015). Particulate matter exposure, prenatal and postnatal windows of susceptibility, and autism spectrum disorders. Epidemiology, 26, 30–42. doi: 10.1097/EDE.0000000000000173.CrossRefPubMedGoogle Scholar
  35. Kalkbrenner, A. E., Daniels, J. L., Chen, J. C., Poole, C., Emch, M., & Morrissey, J. (2010). Perinatal exposure to hazardous air pollutants and autism spectrum disorders at age 8. Epidemiology, 21, 631–641 doi: 10.1097/EDE.0b013e3181e65d76.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kanne, S. M., Gerber, A. J., Quirmbach, L. M., Sparrow, S. S., Cicchetti, D. V., & Saulnier, C. A. (2011). The role of adaptive behavior in autism spectrum disorders: implications for functional outcome. Journal of Autism and Developmental Disorders, 41, 1007–1018. doi: 10.1007/s10803-010-1126-4.CrossRefPubMedGoogle Scholar
  37. Kim, Y. S., Fombonne, E., Koh, Y. J., Kim, S. J., Cheon, K. A., & Leventhal, B. L. (2014). A comparison of DSM-IV pervasive developmental disorder and DSM-5 autism spectrum disorder prevalence in an epidemiologic sample. Journal of the American Academy of Child and Adolescent Psychiatry, 53, 500–508. doi: 10.1016/j.jaac.2013.12.021.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kim, Y. S., & Leventhal, B. L. (2015). Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biological Psychiatry, 77, 66–74. doi: 10.1016/j.biopsych.2014.11.001.CrossRefPubMedGoogle Scholar
  39. Kreyling, W. G., Semmler, M., & Möller, W. (2004). Dosimetry and toxicology of ultrafine particles. Journal of Aerosol Medicine: The Official Journal of the International Society for Aerosols in Medicine, 17, 140–152. doi: 10.1089/0894268041457147.CrossRefGoogle Scholar
  40. Lam, J., et al. (2016). A Systematic Review and Meta-Analysis of Multiple Airborne Pollutants and Autism Spectrum Disorder. PLoS One, 11, e0161851. doi: 10.1371/journal.pone.0161851.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Li, H., & Xin, X. (2013). Nitrogen dioxide (NO(2)) pollution as a potential risk factor for developing vascular dementia and its synaptic mechanisms. Chemosphere, 92, 52–58. doi: 10.1016/j.chemosphere.2013.02.061.CrossRefPubMedGoogle Scholar
  42. Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A., & Pickles, A. (2006). Autism from 2 to 9 years of age. Archives of General Psychiatry, 63, 694–701. doi: 10.1001/archpsyc.63.6.694.CrossRefPubMedGoogle Scholar
  43. Lucchini, R. G., Dorman, D. C., Elder, A., & Veronesi, B. (2012). Neurological impacts from inhalation of pollutants and the nose-brain connection. Neurotoxicology 33, 838–841 doi: 10.1016/j.neuro.2011.12.001.CrossRefPubMedGoogle Scholar
  44. Mattila, M. L., et al. (2011). Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. Journal of the American Academy of Child and Adolescent Psychiatry, 50, 583–592 e11. doi: 10.1016/j.jaac.2011.04.001.CrossRefPubMedGoogle Scholar
  45. Messinger, D., et al. (2013). Beyond autism: A baby siblings research consortium study of high-risk children at three years of age. Journal of the American Academy of Child and Adolescent Psychiatry. doi: 10.1016/j.jaac.2012.12.011.PubMedPubMedCentralGoogle Scholar
  46. Morales, E., et al. (2009). Association of early-life exposure to household gas appliances and indoor nitrogen dioxide with cognition and attention behavior in preschoolers. American Journal of Epidemiology, 169, 1327–1336.CrossRefPubMedGoogle Scholar
  47. Morgan, T. E., et al. (2011). Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environmental Health Perspectives, 119, 1003–1009. doi: 10.1289/ehp.1002973.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mullen (1995). Mullen scales of early learning. Circle Pines, MN: American Guidance Service.Google Scholar
  49. Munson, J., et al. (2008). Evidence for latent classes of IQ in young children with autism spectrum disorder. American journal of mental retardation: AJMR, 113, 439–452. doi: 10.1352/2008.113.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Oliveira, G., et al. (2005). Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Developmental medicine and child neurology, 47, 185–189.CrossRefPubMedGoogle Scholar
  51. Perera, F. P., et al. (2013). Prenatal exposure to air pollution, maternal psychological distress, and child behavior. Pediatrics, 132, e1284-94. doi: 10.1542/peds.2012-3844.CrossRefPubMedGoogle Scholar
  52. Peterson, B. S., et al. (2015). Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry, 72, 531–540. doi: 10.1001/jamapsychiatry.2015.57.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pons, R., et al. (2004). Mitochondrial DNA abnormalities and autistic spectrum disorders. The Journal of Pediatrics, 144, 81–85. doi: 10.1016/j.jpeds.2003.10.023.CrossRefPubMedGoogle Scholar
  54. Porta, D., et al. (2015). Air pollution and cognitive development at age seven in a prospective Italian birth cohort. Epidemiology. doi: 10.1097/EDE.0000000000000405.Google Scholar
  55. Pujol, J., et al. (2016). Traffic pollution exposure is associated with altered brain connectivity in school children. Neuroimage, 129, 175–184. doi: 10.1016/j.neuroimage.2016.01.036.CrossRefPubMedGoogle Scholar
  56. Raz, R., et al. (2015). Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case-control analysis within the Nurses’ Health Study II Cohort. Environmental Health Perspectives, 123, 264–170 doi: 10.1289/ehp.1408133.PubMedGoogle Scholar
  57. Riva, D. R., et al. (2011). Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhalation Toxicology, 23, 257–267. doi: 10.3109/08958378.2011.566290.CrossRefPubMedGoogle Scholar
  58. Roberts, A. L., et al. (2013). Perinatal Air Pollutant Exposures and Autism Spectrum Disorder in the Children of Nurses’ Health Study II Participants. Environmental Health Perspectives, 121, 978–984. doi: 10.1289/ehp.1206187.PubMedPubMedCentralGoogle Scholar
  59. Rossignol, D. A., & Frye, R. E. (2012). Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Molecular Psychiatry, 17, 290–314. doi: 10.1038/mp.2010.136.CrossRefPubMedGoogle Scholar
  60. Rossignol, D. A., & Frye, R. E. (2014). Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Frontiers in Physiology, 5, 150. doi: 10.3389/fphys.2014.00150.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sheppard, L., et al. (2012). Confounding and exposure measurement error in air pollution epidemiology. Air Quality Atmosphere & Health, 5, 203–216. doi: 10.1007/s11869-011-0140-9.CrossRefGoogle Scholar
  62. Singh, M., Phuleria, H. C., Bowers, K., & Sioutas, C. (2006). Seasonal and spatial trends in particle number concentrations and size distributions at the children’s health study sites in Southern California. Journal of Exposure Science & Environmental Epidemiology, 16, 3–18. doi: 10.1038/sj.jea.7500432.CrossRefGoogle Scholar
  63. Sparrow, S. S., & Cicchetti, D. V. (1985). Diagnostic uses of the vineland adaptive behavior scales. Journal of Pediatric Psychology, 10, 215–225.CrossRefPubMedGoogle Scholar
  64. Suades-Gonzalez, E., Gascon, M., Guxens, M., & Sunyer, J. (2015). Air pollution and neuropsychological development: A review of the latest evidence. Endocrinology, 156, 3473–3482. doi: 10.1210/en.2015-1403.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Suzuki, T., et al. (2010). In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice. Particle and Fibre Toxicology. doi: 10.1186/1743-8977-7-7.PubMedPubMedCentralGoogle Scholar
  66. Thurm, A., Manwaring, S. S., Swineford, L., & Farmer, C. (2015). Longitudinal study of symptom severity and language in minimally verbal children with autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 56, 97–104. doi: 10.1111/jcpp.12285.CrossRefGoogle Scholar
  67. Volk, H. E., Hertz-Picciotto, I., Delwiche, L., Lurmann, F., & McConnell, R. (2011). Residential proximity to freeways and autism in the charge study. Environmental Health Perspectives, 119, 873–877. doi: 10.1289/ehp.1002835.CrossRefPubMedGoogle Scholar
  68. Volk, H. E., Lurmann, F., Penfold, B., Hertz-Picciotto, I., & McConnell, R. (2013). Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry, 70, 71–77. doi: 10.1001/jamapsychiatry.2013.266.CrossRefPubMedPubMedCentralGoogle Scholar
  69. von Ehrenstein, O. S., Aralis, H., Cockburn, M., & Ritz, B. (2014). In utero exposure to toxic air pollutants and risk of childhood autism. Epidemiology. doi: 10.1097/EDE.0000000000000150.PubMedGoogle Scholar
  70. Vrijheid, M., et al. (2012). Indoor air pollution from gas cooking and infant neurodevelopment. Epidemiology, 23, 23–32. doi: 10.1097/EDE.0b013e31823a4023.CrossRefPubMedGoogle Scholar
  71. Wang, S., Zhang, J., Zeng, X., Zeng, Y., & Chen, S. (2009). Association of traffic-related air pollution with children’s neurobehavioral functions in Quanzhou, China. Environmental Health Perspectives, 117, 1612–1618. doi: 10.1289/ehp.0800023.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Weisskopf, M. G., Kioumourtzoglou, M. A., & Roberts, A. L. (2015). Air pollution and autism spectrum disorders: causal or confounded? Current Environmental Health Reports, 2, 430–439 doi: 10.1007/s40572-015-0073-9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Weissman, J. R., et al. (2008). Mitochondrial disease in autism spectrum disorder patients: A cohort analysis. PLoS ONE, 3, e3815. doi: 10.1371/journal.pone.0003815.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wilker, E. H., et al. (2016). Fine particulate matter, residential proximity to major roads, and markers of small vessel disease in a memory study population. Journal of Alzheimer’s disease: JAD, 53, 1315–1323. doi: 10.3233/JAD-151143.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Windham, G. C., Zhang, L., Gunier, R., Croen, L. A., & Grether, J. K. (2006). Autism spectrum disorders in relation to distribution of hazardous air pollutants in the san francisco bay area. Environmental Health Perspectives, 114, 1438–1444.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yan, W., Ji, X., Shi, J., Li, G., & Sang, N. (2015). Acute nitrogen dioxide inhalation induces mitochondrial dysfunction in rat brain. Environmental Research, 138, 416–424. doi: 10.1016/j.envres.2015.02.022.CrossRefPubMedGoogle Scholar
  77. Yorifuji, T., Kashima, S., Higa Diez, M., Kado, Y., Sanada, S., & Doi, H. (2015). Prenatal exposure to traffic-related air pollution and child behavioral development milestone delays in Japan. Epidemiology. doi: 10.1097/EDE.0000000000000361.Google Scholar
  78. Zerbo, O., Iosif, A. M., Delwiche, L., Walker, C., & Hertz-Picciotto, I. (2011). Month of conception and risk of autism. Epidemiology 22, 469–475. doi: 10.1097/EDE.0b013e31821d0b53.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhu, Y., Hinds, W. C., Kim, S., & Sioutas, C. (2002). Concentration and size distribution of ultrafine particles near a major highway. Journal of the Air & Waste Management Association, 52, 1032–1042.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Tara Kerin
    • 1
  • Heather Volk
    • 2
    Email author
  • Weiyan Li
    • 3
  • Fred Lurmann
    • 4
  • Sandrah Eckel
    • 1
  • Rob McConnell
    • 1
  • Irva Hertz-Picciotto
    • 5
  1. 1.Department of Preventive Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Mental Health, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA
  4. 4.Sonoma Technology Inc.PetalumaUSA
  5. 5.Department of Public Health SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations