Skip to main content
Log in

Effect of Omega-3 and -6 Supplementation on Language in Preterm Toddlers Exhibiting Autism Spectrum Disorder Symptoms

Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Delayed language development may be an early indicator of autism spectrum disorder (ASD). Early intervention is critical for children with ASD, and the present study presents pilot data on a clinical trial of omega-3 and -6 fatty acid supplementation and language development, a secondary trial outcome, in children at risk for ASD. We randomized 31 children to receive an omega-3 and -6 supplement or a placebo for 3 months, and measured their language abilities at baseline and after supplementation. Gesture use, but not word production, increased for children in the treatment group more than children in the placebo group. These results suggest possible effectiveness of omega-3 and -6 supplementation for language development in children at risk for ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Ahmad, A., Moriguchi, T., & Salem, N. (2002a). Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatric Neurology, 26, 210–218.

    Article  PubMed  Google Scholar 

  • Ahmad, A., Murthy, M., Moriguchi, T., Salem, N., & Greiner, R. S. (2002b). A decrease in cell size accompanies a loss of docosahexaenoate in the rat hippocampus. Nutritional Neuroscience, 5, 103–113. doi:10.1080/10284150290018973.

    Article  PubMed  Google Scholar 

  • Aid, S., Vancassel, S., Poumes-Ballihaut, C., Chalon, S., Guesnet, P., & Lavialle, M. (2003). Effect of a diet-induced n-3 PUFA depletion on cholinergic parameters in the rat hippocampus. Journal of Lipid Research, 44, 1545–1551. doi:10.1194/jlr.M300079-JLR200.

    Article  PubMed  Google Scholar 

  • Pan, B.A., Rowe, M. L., Spier, E., & Tamis-Lemonda, C. (2004). Measuring productive vocabulary of toddlers in low-income families: Concurrent and predictive validity of three sources of data. Journal of Child Language, 31, 587–608. doi:10.1017/s0305000904006270.

    Article  PubMed  Google Scholar 

  • Amminger, G. P., Berger, G. E., Schafer, M. R., Klier, C., Friedrich, M. H., & Feucht, M. (2007). Omega-3 fatty acids supplementation in children with autism: A double-blind randomized, placebo-controlled pilot study. Biological Psychiatry, 61, 551–553. doi:10.1016/j.biopsych.2006.05.007.

    Article  PubMed  Google Scholar 

  • Arriaga, R. I., Fenson, L., Cronan, T., Pethick, S. J. (2008). Scores on the MacArthur Communicative Development Inventory of children from lowand middle-income families. Applied Psycholinguistics, 19, 209 doi:10.1017/s0142716400010043.

    Article  Google Scholar 

  • Auestad, N., et al. (2001). Growth and development in term infants fed long-chain polyunsaturated fatty acids: A double-masked, randomized, parallel, prospective, multivariate study. Pediatrics, 108, 372–381. doi:10.1542/peds.108.2.372.

    Article  PubMed  Google Scholar 

  • Barden, A. E., Mas, E., & Mori, T. A. (2016). n-3 Fatty acid supplementation and proresolving mediators of inflammation. Current Opinion in Lipidology, 27, 26–32. doi:10.1097/MOL.0000000000000262.

    Article  PubMed  Google Scholar 

  • Bent, S., et al. (2014). Internet-based, randomized, controlled trial of omega-3 fatty acids for hyperactivity in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 53, 658–666. doi:10.1016/j.jaac.2014.01.018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bliss, T.V.P., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.

    Article  PubMed  Google Scholar 

  • Bourre, J. M., et al. (1989). The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. Journal of Nutrition, 119, 1880–1892.

    PubMed  Google Scholar 

  • Bourre, J.M., et al. (1993). Function of dietary polyunsaturated fatty acids in nervous system. Prostaglandins, Leukotrienes and Essential Fatty Acids, 48, 5–15.

    Article  Google Scholar 

  • Bowen, K. J., Harris, W. S., & Kris-Etherton, P. M. (2016). Omega-3 fatty acids and cardiovascular disease: Are there benefits? Current Treatment Options in Cardiovascular Medicine, 18, 69. doi:10.1007/s11936-016-0487-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Breckenridge, W. C., Morgan, I. G., Zanetta, J. P., & Vincendon, G. (1973). Adult rat brain synaptic vesicles II. Lipid composition. Biochimica et Biophysica Acta, 320, 681–686.

    Article  PubMed  Google Scholar 

  • Bruckner, C., Yoder, P., Stone, W., & Saylor, M. (2007). Construct validity of the MCDI-I receptive vocabulary scale can be improved: Differential item functioning between toddlers with autism spectrum disorders and typically-developing infants. Journal of Speech Language and Hearing Research, 50, 1631–1638.

    Article  Google Scholar 

  • Catalan, J., Moriguchi, T., Slotnick, B., Murthy, M., Greiner, R. S., & Salem, N. (2002). Cognitive deficits in docosahexaenoic acid-deficient rats. Behavioral Neuroscience, 116, 1022–1031. doi:10.1037/0735-7044.116.6.1022.

    Article  PubMed  Google Scholar 

  • Cattani, A., Bonifacio, S., Fertz, M., Iverson, J. M., Zocconi, E., & Caselli, M. C. (2010). Communicative and linguistic development in preterm children: a longitudinal study from 12 to 24 months. International Journal of Language & Communication Disorders, 45, 162–173. doi:10.3109/13682820902818870.

    Article  Google Scholar 

  • Chalon, S., et al. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. Journal of Nutrition, 128, 2512–2519.

    PubMed  Google Scholar 

  • Clandinin, M. T., et al. (2005). Growth and development of preterm infants fed infant formulas containing docosahexaenoic acid and arachidonic acid. The Journal of pediatrics, 146, 461–468. doi:10.1016/j.jpeds.2004.11.030.

    Article  PubMed  Google Scholar 

  • Clandinin, M. T., Cheema, S., Field, J., Garg, M. L., Venkatraman, J., & Clandinin, T. R. (1991). Dietary fat: Exogenous determination of membrane structure and cell function. FASEB Journal, 5, 2761–2769.

    PubMed  Google Scholar 

  • Coderre, E. L., Chernenok, M., Gordon, B., & Ledoux, K. (2017). Linguistic and non-linguistic semantic processing in individuals with autism spectrum disorders: An ERP study. Journal of Autism and Developmental Disorders. doi:10.1007/s10803-016-2985-0.

    PubMed  Google Scholar 

  • Dale, P. S. (1991). The validity of a parent report measure of vocabulary and syntax at 24 months. Journal of Speech and Hearing Research, 34, 565–571.

    Article  PubMed  Google Scholar 

  • Delion, S., Chalon, S., Herault, J., Guilloteau, D., Besnard, J.-C., & Durand, G. (1994). Chronic dietary alpha-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. Journal of Nutrition, 124, 2466–2476.

    PubMed  Google Scholar 

  • du Bois, T. M., Deng, C., Bell, W., & Huang, X. F. (2006). Fatty acids differentially affect serotonin receptor and transporter binding in the rat brain. Neuroscience, 139, 1397–1403. doi:10.1016/j.neuroscience.2006.02.068.

    Article  PubMed  Google Scholar 

  • Dyall, S. C., & Michael-Titus, A. T. (2008). Neurological benefits of omega-3 fatty acids. Neuromolecular Medicine, 10, 219–235. doi:10.1007/s12017-008-8036-z.

    Article  PubMed  Google Scholar 

  • Fang, Y. J., Zhou, M. H., Gao, X. F., Gu, H., & Mei, Y. A. (2011). Arachidonic acid modulates Na+ currents by non-metabolic and metabolic pathways in rat cerebellar granule cells. The Biochemical Journal, 438, 203–215. doi:10.1042/BJ20110569.

    Article  PubMed  Google Scholar 

  • Farvid, M. S., et al. (2014). Dietary linoleic acid and risk of coronary heart disease: A systematic review and meta-analysis of prospective cohort studies. Circulation, 130, 1568–1578. doi:10.1161/CIRCULATIONAHA.114.010236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenson, L., Pethick, S. J., Renda, C., Cox, J. L. (2000). Short-form versions of the MacArthur communicative development inventories. Applied Psycholinguistics, 21, 95–116.

    Article  Google Scholar 

  • Fewtrell, M. S., et al. (2004). Randomized, double-blind trial of long-chain polyunsaturated fatty acid supplementation with fish oil and borage oil in preterm infants. The Journal of Pediatrics, 144, 471–479. doi:10.1016/j.jpeds.2004.01.034.

    Article  PubMed  Google Scholar 

  • Foster-Cohen, S., Edgin, J. O., Champion, P. R., & Woodward, L. J. (2007). Early delayed language development in very preterm infants: Evidence from the MacArthur-Bates CDI. Journal of Child Language, 34, 655. doi:10.1017/s0305000907008070.

    Article  PubMed  Google Scholar 

  • Frank, M. C., Braginsky, M., Yurovsky, D., Marchman, V.A. (2016). Wordbank: An open repository for developmental vocabulary data. Journal of Child Language, 1–18. doi:10.1017/S0305000916000209.

  • Garton, A. F. (1985). The production of this and that by young children. First Language, 6, 29–39.

    Article  Google Scholar 

  • Gibson, R. A., Neumann, M. A., Lien, E. L., Boyd, K. A., & Tu, W. C. (2013). Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids. Prostaglandins Leukotrienes and Essential Fatty Acids, 88, 139–146. doi:10.1016/j.plefa.2012.04.003.

    Article  Google Scholar 

  • Gordon, R. G., & Watson, L. R. (2015). Brief report: Gestures in children at risk for autism spectrum disorders. Journal of Autism and Developmental Disorders, 45, 2267–2273. doi:10.1007/s10803-015-2390-0.

    Article  PubMed  Google Scholar 

  • Groen, W. B., Zwiers, M. P., van der Gaag, R. J., & Buitelaar, J. K. (2008). The phenotype and neural correlates of language in autism: An integrative review. Neuroscience and Biobehavioral Reviews, 32, 1416–1425. doi:10.1016/j.neubiorev.2008.05.008.

    Article  PubMed  Google Scholar 

  • Harnack, K., Andersen, G., & Somoza, V. (2009). Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids. Nutrition Metabolism, 6, 8. doi:10.1186/1743-7075-6-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris, W. S. (2006). The omega-6/omega-3 ratio and cardiovascular disease risk: Uses and abuses. Current Atherosclerosis Reports, 8, 453–459.

    Article  PubMed  Google Scholar 

  • Henriksen, C., et al. (2008). Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics, 121, 1137–1145. doi:10.1542/peds.2007-1511.

    Article  PubMed  Google Scholar 

  • Ikemoto, A., Kobayashi, T., Watanabe, S., & Okuyama, H. (1997). Membrane fatty acid modifications of PC12 cells by arachidonate or docosahexaenoate affect neurite outgrowth but not norepinephrine release. Neurochemical Research, 22, 671–678.

    Article  PubMed  Google Scholar 

  • Innis, S. M. (2014). Omega-3 fatty acid biochemistry: Perspectives from human nutrition. Military Medicine, 179, 82–87. doi:10.7205/MILMED-D-14-00147.

    Article  PubMed  Google Scholar 

  • Johnson, M., Fransson, G., Ostlund, S., Areskoug, B., & Gillberg, C. (2016). Omega 3/6 fatty acids for reading in children: A randomized, double-blind, placebo-controlled trial in 9-year-old mainstream schoolchildren in Sweden. Journal of Child Psychology and Psychiatry and Allied Disciplines. doi:10.1111/jcpp.12614.

    Google Scholar 

  • Johnson, S., Hollis, C., Kochhar, P., Hennessey, E., Wolke, D., & Marlow, N. (2010). Autism spectrum disorders in extremely preterm children. Journal of Pediatrics, 156, 525–531.

    Article  PubMed  Google Scholar 

  • Jucaite, A., Fernell, E., Halldin, C., Forssberg, H., & Farde, L. (2005). Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: Association between striatal dopamine markers and motor hyperactivity. Biological Psychiatry, 57, 229–238. doi:10.1016/j.biopsych.2004.11.009.

    Article  PubMed  Google Scholar 

  • Jumpsen, J., Lien, E. L., Goh, Y. K., & Clandinin, M. T. (1997a). During neuronal and glial cell development diet n-6 to n-3 fatty acid ratio alters the fatty acid composition of phosphatidylinositol and phosphatidylserine. Biochimica et Biophysica Acta, 1347, 40–50.

    Article  PubMed  Google Scholar 

  • Jumpsen, J., Lien, E. L., Goh, Y. K., & Clandinin, M. T. (1997b). Small changes of dietary (n-6) and (n-3)/fatty acid content ratio alter phosphatidylethanolamine and phosphatidylcholine fatty acid composition during development of neuronal and glial cells in rats. Journal of Nutrition, 127, 724–731.

    PubMed  Google Scholar 

  • Kato, K., Uruno, K., Saito, K., & Kato, H. (1991). Both arachidonic acid and 1-oleoyl-2-acetyl glycerol in low magnesium solution induce long-term potentiation in hippocampal CA1 neurons in vitro. Brain Research, 563, 94–100.

    Article  PubMed  Google Scholar 

  • Keim, S. A., et al. (under review). Omega-3 and -6 fatty acid supplementation may benefit autism symptoms based on parent report in preterm toddlers. The Journal of Nutrition.

  • Koletzko, B., et al. (2008). The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: Review of current knowledge and consensus recommendations. Journal of Perinatal Medicine, 36, 5–14. doi:10.1515/JPM.2008.001.

    PubMed  Google Scholar 

  • Kris-Etherton, P., Fleming, J., & Harris, W. S. (2010). The debate about n-6 polyunsaturated fatty acid recommendations for cardiovascular health. Journal of the American Dietetic Association, 110, 201–204. doi:10.1016/j.jada.2009.12.006.

    Article  PubMed  Google Scholar 

  • Kuzniewicz, M. W., Wi, S., Qian, Y., Walsh, E. M., Armstrong, M. A., & Croen, L. A. (2014). Prevalence and neonatal factors associated with autism spectrum disorders in preterm infants. The Journal of Pediatrics, 164, 20–25. doi:10.1016/j.jpeds.2013.09.021.

    Article  PubMed  Google Scholar 

  • Lapillonne, A., & Moltu, S. J. (2016). Long-chain polyunsaturated fatty acids and clinical outcomes of preterm infants. Annals of Nutrition and Metabolism, 69(Suppl 1), 35–44. doi:10.1159/000448265.

    PubMed  Google Scholar 

  • Lauritzen, L., Jorgensen, M. H., Olsen, S. F., Straarup, E. M., & Michaelsen, K. F. (2005). Maternal fish oil supplementation in lactation: Effect on developmental outcome in breast-fed infants. Reproduction Nutrition Development, 45, 535–547. doi:10.1051/rnd:2005044.

    Article  Google Scholar 

  • LeBarton, E. S., Goldin-Meadow, S., & Raudenbush, S. (2015). Experimentally-induced Increases in Early gesture lead to increases in spoken vocabulary. Journal of Cognition and Development, 16, 199–220. doi:10.1080/15248372.2013.858041.

    Article  PubMed  Google Scholar 

  • LeBarton, E. S., & Iverson, J. M. (2016). Gesture development in toddlers with an older sibling with autism. International Journal of Language & Communication Disorders, 51, 18–30. doi:10.1111/1460-6984.12180.

    Article  Google Scholar 

  • Lee, J.M., Lee, H., Kang, S., Park, W. J. (2016). Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients, 8, 23. doi:10.3390/nu8010023.

    Article  PubMed Central  Google Scholar 

  • Lynch, M. A., & Voss, K. L. (1994). Membrane arachidonic acid concentration correlates with age and induction of long-term potentiation in the dentate gyrus in the rat. European Journal of Neuroscience, 6, 1008–1014.

    Article  PubMed  Google Scholar 

  • Mankad, D., et al. (2015). A randomized, placebo controlled trial of omega-3 fatty acids in the treatment of young children with autism. Molecular Autism, 6, 18. doi:10.1186/s13229-015-0010-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez, M. (1992). Tissue levels of polyunsaturated fatty acids during early human development. Journal of Pediatrics, 120, S129–S138.

    Article  PubMed  Google Scholar 

  • Martinez, M., & Mougan, I. (1998). Fatty acid composition of human brain phospholipids during normal development. Journal of Neurochemistry, 71, 2528–2533.

    Article  PubMed  Google Scholar 

  • McNamara, R. K., et al. (2007). Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biological Psychiatry, 62, 17–24. doi:10.1016/j.biopsych.2006.08.026.

    Article  PubMed  Google Scholar 

  • McNamara, R. K. (2010). DHA deficiency and prefrontal cortex neuropathology in recurrent affective disorders. The Journal of Nutrition, 140, 864–868. doi:10.3945/jn.109.113233.

    Article  PubMed  PubMed Central  Google Scholar 

  • McNamara, R. K., Jandacek, R., Rider, T., Tso, P., Dwivedi, Y., & Pandey, G. N. (2010). Selective deficits in erythrocyte docosahexaenoic acid composition in adult patients with bipolar disorder and major depressive disorder. Journal of Affective Disorders, 126, 303–311. doi:10.1016/j.jad.2010.03.015.

    Article  PubMed  PubMed Central  Google Scholar 

  • McNamara, R. K., & Liu, Y. (2011). Reduced expression of fatty acid biosynthesis genes in the prefrontal cortex of patients with major depressive disorder. Journal of Affective Disorders, 129, 359–363. doi:10.1016/j.jad.2010.08.021.

    Article  PubMed  Google Scholar 

  • Meldrum, S. J., D’Vaz, N., Simmer, K., Dunstan, J. A., Hird, K., & Prescott, S. L. (2012). Effects of high-dose fish oil supplementation during early infancy on neurodevelopment and language: A randomised controlled trial. The British Journal of Nutrition, 108, 1443–1454. doi:10.1017/S0007114511006878.

    Article  PubMed  Google Scholar 

  • Mody, M., et al. (2017). Communication deficits and the motor system: exploring patterns of associations in autism spectrum disorder (ASD). Journal of Autism and Developmental Disorders, 47, 155–162. doi:10.1007/s10803-016-2934-y.

    Article  PubMed  Google Scholar 

  • Moriguchi, T., Greiner, R. S., & Salem, N. (2000). Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. Journal of Neurochemistry, 75, 2563–2573.

    Article  PubMed  Google Scholar 

  • Mundy, P., Sigman, M., Ungerer, J., & Sherman, T. (1987). Nonverbal communnication and play correlates of language development in autistic children. Journal of Autism and Developmental Disorders, 17, 349–364.

    Article  PubMed  Google Scholar 

  • Nakamura, M. T., & Nara, T. Y. (2004). Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annual Review of Nutrition, 24, 345–376. doi:10.1146/annurev.nutr.24.121803.063211.

    Article  PubMed  Google Scholar 

  • Ozcaliskan, S., Adamson, L. B., & Dimitrova, N. (2016). Early deictic but not other gestures predict later vocabulary in both typical development and autism. Autism, 20, 754–763. doi:10.1177/1362361315605921.

    Article  PubMed  Google Scholar 

  • Parlade, M. V., & Iverson, J. M. (2015). The development of coordinated communication in infants at heightened risk for autism spectrum disorder. Journal of Autism and Developmental Disorders, 45, 2218–2234. doi:10.1007/s10803-015-2391-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parletta, N., Niyonsenga, T., Duff, J. (2016). Omega-3 and omega-6 polyunsaturated fatty acid levels and correlations with symptoms in children with attention deficit hyperactivity disorder, autistic spectrum disorder and typically developing controls. PLoS ONE. doi:10.4226/78/572fdf0edfb74.

    PubMed  PubMed Central  Google Scholar 

  • Patrick, R. P., & Ames, B. N. (2015). Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: Relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. The FASEB Journal, 29, 2207–2222. doi:10.1096/fj.14-268342.

    Article  PubMed  Google Scholar 

  • Pritchard, M. A., et al. (2016). Autism in toddlers born very preterm. Pediatrics, 137, e20151949. doi:10.1542/peds.2015-1949.

    Article  PubMed  Google Scholar 

  • Rescorla, L. (1991). Identifying expressive language delay at two. Topics in Language Disorders, 11, 14–20.

    Article  Google Scholar 

  • Richardson, A. J., & Montgomery, P. (2005). The Oxford-Durham study: A randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics, 115, 1360–1366. doi:10.1542/peds.2004-2164.

    Article  PubMed  Google Scholar 

  • Ring, E.D., Fenson, L. (2000). The correspondence between parent report and child performance for receptive and expressive vocabulary beyond infancy. First Language, 20, 141–159.

    Article  Google Scholar 

  • Sansavini, A., et al. (2011). Longitudinal trajectories of gestural and linguistic abilities in very preterm infants in the second year of life. Neuropsychologia, 49, 3677–3688. doi:10.1016/j.neuropsychologia.2011.09.023.

    Article  PubMed  Google Scholar 

  • Schaechter, J. D., & Benowitz, L. I. (1993). Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes. The Journal of Neuroscience, 13, 4361–4371.

    PubMed  Google Scholar 

  • Schneider, M. R., DelBello, M. P., McNamara, R. K., Strakowski, S. M., & Adler, C. M. (2012). Neuroprogression in bipolar disorder. Bipolar Disorders, 14, 356–374. doi:10.1111/j.1399-5618.2012.01024.x.

    Article  PubMed  Google Scholar 

  • Scott, D. T., Janowsky, J. S., Carroll, R. E., Taylor, J. A., Auestad, N., & Montalto, M. B. (1998). Formula supplementation with long-chain polyunsaturated fatty acids: Are there developmental benefits? Pediatrics, 102, e59–e59. doi:10.1542/peds.102.5.e59.

    Article  PubMed  Google Scholar 

  • Serhan, C. N., & Savill, J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunology, 6, 1191–1197. doi:10.1038/ni1276.

    Article  PubMed  Google Scholar 

  • Sheppard, K. W., & Cheatham, C. L. (2017). Executive functions and the omega-6-to-omega-3 fatty acid ratio: A cross-sectional study. The American Journal of Clinical Nutrition, 105, 32–41. doi:10.3945/ajcn.116.141390.

    Article  PubMed  Google Scholar 

  • Simmer, K., Schulzke, S., Patole, S. K. (2008). Longchain polyunsaturated fatty acid supplementation in preterm infants (Review). The Cochrane Library, 1, 1–57.

    Google Scholar 

  • Spencer, T. J., et al. (2007). Further evidence of dopamine transporter dysregulation in ADHD: A controlled PET imaging study using altropane. Biological Psychiatry, 62, 1059–1061. doi:10.1016/j.biopsych.2006.12.008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spittle, A. J., et al. (2017). Neurobehaviour at term-equivalent age and neurodevelopmental outcomes at 2 years in infants born moderate-to-late preterm. Developmental Medicine and Child Neurology, 59, 207–215. doi:10.1111/dmcn.13297.

    Article  PubMed  Google Scholar 

  • Verhaeghe, L., Dereu, M., Warreyn, P., De Groote, I., Vanhaesebrouck, P., & Roeyers, H. (2016). Extremely preterm born children at very high risk for developing autism spectrum disorder. Child Psychiatry and Human Development, 47, 729–739. doi:10.1007/s10578-015-0606-3.

    Article  PubMed  Google Scholar 

  • Voigt, R. G., et al. (2014). Dietary docosahexaenoic acid supplementation in children with autism. Journal of Pediatric Gastroenterology and Nutrition, 58, 715–722. doi:10.1097/MPG.0000000000000260.

    PubMed  Google Scholar 

  • Wainwright, P. E., Jalali, E., Mutsaers, M., Bell, R., & Cvitkovic, S. (1999). An imbalance of dietary essential fatty acids retards behavioral development in mice. Physiology and Behavior, 66, 833–839.

    Article  PubMed  Google Scholar 

  • Wainwright, P. E., Xing, H.-C., Mutsaers, L., McCutcheon, D., & Kyle, D. (1997). Arachidonic acid offsests the effects of mouse brain and behavior of a diet with low (n−6):(n−3) ratio and very high levels of docosahexaenoic acid. Journal of Nutrition, 127, 184–193.

    PubMed  Google Scholar 

  • Weiser, M. J., Wynalda, K., Salem, N. Jr., Butt, C. M. (2015). Dietary DHA during development affects depression-like behaviors and biomarkers that emerge after puberty in adolescent rats. Journal of Lipid Research, 56, 151–166. doi:10.1194/jlr.M055558.

    Article  PubMed  PubMed Central  Google Scholar 

  • Willatts, P., Forsyth, J. S. (2000). The role of long-chain polyunsaturated fatty acids in infant cognitive development. Prostaglandins Leukotrienes and Essential Fatty Acids, 63, 95–100.

    Article  Google Scholar 

  • Willett, W., et al. (1985). Reproducibility and validity of a semiquantitative food frequency questionnaire. American Journal of Epidemiology, 122, 51–65.

    Article  PubMed  Google Scholar 

  • Winkens, B., van Breukelen, G. J., Schouten, H. J., & Berger, M. P. (2007). Randomized clinical trials with a pre- and a post-treatment measurement: Repeated measures versus ANCOVA models. Contemporary Clinical Trials, 28, 713–719. doi:10.1016/j.cct.2007.04.002.

    Article  PubMed  Google Scholar 

  • Zimmer, L., Delpal, S., Guilloteau, D., Aioun, J., Durand, G., & Chalon, S. (2000). Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex. Neuroscience Letters, 284, 25–28.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the families who participated in the study and Yvette Bean, Kendra Heck, Chenali Jayadeva, Julia Less, and Kamma Smith of Nationwide Children’s Hospital for data collection and administrative support.

Funding

This study was funded by The Marci and Bill Ingram Fund for Autism Spectrum Disorders Research (no grant number), Cures Within Reach (no grant number), the National Center for Advancing Translational Sciences/NIH (UL1TR001070), and internal support from the Research Institute at Nationwide Children’s Hospital.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Advancing Translational Sciences or the National Institutes of Health. Nordic Naturals provided the investigational product, and Welsh, Holme, & Clark Co., Inc. provided canola oil at no cost. Neither the study sponsors nor product providers had a role in the study design.

Author information

Authors and Affiliations

Authors

Contributions

KWS ran the statistical analyses, interpreted the results, and drafted and revised the manuscript; KMB participated in study design, oversaw data collection, participated in analyses, and revised the manuscript; JR participated in study conception and design, oversaw statistical analyses, and revised the manuscript; SAK, BG, MAK, LKR, CB, and DLC conceived of and designed the study, had overall oversight of the project, participated in statistical analyses and interpretation of data, and revised the manuscript.

Corresponding author

Correspondence to Kelly W. Sheppard.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

All procedures performed in this study were in accordance with institutional ethical standards and with the 1964 Helsinki declaration and its later amendments.

Informed Consent

Written informed consent (parental permission for the children) was obtained from all individual participants included in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 121 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheppard, K.W., Boone, K.M., Gracious, B. et al. Effect of Omega-3 and -6 Supplementation on Language in Preterm Toddlers Exhibiting Autism Spectrum Disorder Symptoms. J Autism Dev Disord 47, 3358–3369 (2017). https://doi.org/10.1007/s10803-017-3249-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-017-3249-3

Keywords

Navigation