Journal of Autism and Developmental Disorders

, Volume 47, Issue 9, pp 2918–2926 | Cite as

Brief Report: The Negev Hospital-University-Based (HUB) Autism Database

  • Gal Meiri
  • Ilan Dinstein
  • Analya Michaelowski
  • Hagit Flusser
  • Michal Ilan
  • Michal Faroy
  • Asif Bar-Sinai
  • Liora Manelis
  • Dana Stolowicz
  • Lili Lea Yosef
  • Nadav Davidovitch
  • Hava Golan
  • Shosh Arbelle
  • Idan MenasheEmail author
Brief Report


Elucidating the heterogeneous etiologies of autism will require investment in comprehensive longitudinal data acquisition from large community based cohorts. With this in mind, we have established a hospital-university-based (HUB) database of autism which incorporates prospective and retrospective data from a large and ethnically diverse population. The collected data includes social-demographic characteristics, standardized behavioral testing, detailed clinical history from electronic patient records, genetic samples, and various neurological measures. We describe the initial cohort characteristics following the first 18 months of data collection (188 children with autism). We believe that the Negev HUB autism database offers a unique and valuable resource for studying the heterogeneity of autism etiologies across different ethnic populations.


Autism Epidemiology Multidisciplinary Child development Preschool psychiatry 



This study was supported by a generous anonymous donation, a donation from Ann Berger, in memory of her father Daniel Falkner, the Israeli Science Foundation (ISF Grant 527/15), and by the Joyce and Irving Goldman Family foundation for research excellence. In addition, we want to thank to Mr. Suleiman Abu-Hani for his assistance in the Bedouin Families recruitment, and to all the families of children with autism who gave their consent to participate in this study.

Author Contributions

Study conception and design: GM, ID, and IM. Acquisition of data: GM, ID, AM, HF, MI, MF, AB, LM, DS, LLY, ND, HG, SA, and IM. Analysis and interpretation of data: GM, ID, DS, AB, and IM. Drafting of manuscript: ​GM, ID, and IM. Critical revision: GM, ID, and IM.

Compliance with Ethical Standards

Conflict of interest

Gal Meiri, Nadav Davidovitch, and Idan Menashe has received a research grant from the Israeli Science Foundation (Grant Number 527/15). Ilan Dinstein, Analya Michaelowski, Hagit Flusser, Michal Ilan, Michal Faroy, Asif Bar-Sinai, Liora Manelis, Dana Stolowicz, Lili Lea Yosef, Hava Golan, and Shosh Arbelle declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10803_2017_3207_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 KB)


  1. American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV). Arlington: American Psychiatric Publishing.CrossRefGoogle Scholar
  2. American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-V). Arlington: American Psychiatric Publishing.CrossRefGoogle Scholar
  3. Amir, H., Weintraub, A., Aricha-Tamir, B., Apel-Sarid, L., Holcberg, G., & Sheiner, E. (2009). A piece in the puzzle of intrauterine fetal death: Pathological findings in placentas from term and preterm intrauterine fetal death pregnancies. The Journal of Maternal-Fetal and Neonatal Medicine: The official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet, 22, 759–764. doi: 10.3109/14767050902929396.CrossRefGoogle Scholar
  4. Antshel, K. M., Zhang-James, Y., & Faraone, S. V. (2013). The comorbidity of ADHD and autism spectrum disorder. Expert Review of Neurotherapeutics, 13, 1117–1128. doi: 10.1586/14737175.2013.840417.CrossRefPubMedGoogle Scholar
  5. Bayley, N. (2006). Bayley scales of infant and toddler development–third edition. Journal of Psychoeducational Assessment, 25, 180–190. doi: 10.1177/0734282906297199.Google Scholar
  6. Bilenko, N., Fraser D., Vardy H., & Belmaker I. (2014). Impact of multiple micronutrient supplementation (“sprinkles”) on iron deficiency anemia in Bedouin Arab and Jewish infants. The Israel Medical Association Journal: IMAJ 16, 434–438.PubMedGoogle Scholar
  7. Buxbaum, J. D., et al. (2014). The autism simplex collection: An international, expertly phenotyped autism sample for genetic and phenotypic analyses. Molecular Autism: The International Journal of Research and Practice, 5, 34. doi: 10.1186/2040-2392-5-34.CrossRefGoogle Scholar
  8. CDC. (2014). Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveillance Summaries 63(Suppl 2), 1–21.Google Scholar
  9. Chawarska, K., & Shic, F. (2009). Looking but not seeing: Atypical visual scanning and recognition of faces in 2 and 4-year-old children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 39, 1663–1672. doi: 10.1007/s10803-009-0803-7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Courchesne, E., Campbell, K., & Solso, S. (2011). Brain growth across the life span in autism: Age-specific changes in anatomical pathology. Brain Research, 1380, 138–145. doi: 10.1016/j.brainres.2010.09.101.CrossRefPubMedGoogle Scholar
  11. Croen, L., et al. (2012). CB7-03: A diverse autism registry for etiologic and effectiveness studies: Prevalence and demographic characteristics. Clinical Medicine and Research, 10, 183. doi: 10.3121/cmr.2012.1100.cb7-03.CrossRefPubMedCentralGoogle Scholar
  12. De Rubeis, S., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515, 209–215. doi: 10.1038/nature13772.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dealberto, M. J. (2013). Are different subtypes of autism spectrum disorders associated with different factors? Acta Psychiatrica Scandinavica, 128, 1–2. doi: 10.1111/acps.12063.CrossRefPubMedGoogle Scholar
  14. Di Martino, A., et al. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19, 659–667. doi: 10.1038/mp.2013.78.CrossRefPubMedGoogle Scholar
  15. Dinstein, I., Haar, S., Atsmon, S., & Schtaerman, H. (2017). No evidence of early head circumference enlargements in children later diagnosed with autism in Israel. Molecular Autism: The International Journal of Research and Practice, 8, 15. doi: 10.1186/s13229-017-0129-9.CrossRefGoogle Scholar
  16. Dunn, W., & Westman, K. (1997). The Sensory Profile: The performance of a national sample of children without disabilities. American Journal of Occupational Therapy, 51, 25–34.CrossRefPubMedGoogle Scholar
  17. Fischbach, G. D., & Lord, C. (2010). The Simons Simplex Collection: A resource for identification of autism genetic risk factors. Neuron, 68, 192–195. doi: 10.1016/j.neuron.2010.10.006.CrossRefPubMedGoogle Scholar
  18. Gabis, L. V., & Pomeroy J. (2014). An etiologic classification of autism spectrum disorders. The Israel Medical Association Journal: IMAJ 16, 295–298.PubMedGoogle Scholar
  19. Georgiades, S., et al. (2012). Investigating phenotypic heterogeneity in children with autism spectrum disorder: A factor mixture modeling approach. Journal of Child Psychology and Psychiatry, and Allied Disciplines. doi: 10.1111/j.1469-7610.2012.02588.x.Google Scholar
  20. Geschwind, D. H., et al. (2001). The autism genetic resource exchange: A resource for the study of autism and related neuropsychiatric conditions. American Journal of Human Genetics, 69, 463–466. doi: 10.1086/321292.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gotsman, I., et al. (2015). Ethnic disparity in the clinical characteristics of patients with heart failure. European Journal of Heart Failure, 17, 801–808. doi: 10.1002/ejhf.285.CrossRefPubMedGoogle Scholar
  22. Harel, T., Goldberg, Y., Shalev, S. A., Chervinski, I., Ofir, R., & Birk, O. S. (2004). Limb-girdle muscular dystrophy 2I: Phenotypic variability within a large consanguineous Bedouin family associated with a novel FKRP mutation. European Journal of Human Genetics: EJHG, 12, 38–43. doi: 10.1038/sj.ejhg.5201087.CrossRefPubMedGoogle Scholar
  23. Iossifov, I., et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74, 285–299. doi: 10.1016/j.neuron.2012.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Israel, T.C.B.o.S.o. (2006–2016). Live birth statistics. Statistical abstract of Israel.Google Scholar
  25. Israel, T.C.B.o.S.o. (2016). Total population. Statistical abstract of Israel.Google Scholar
  26. Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2-6-month-old infants later diagnosed with autism. Nature, 504, 427–431. doi: 10.1038/nature12715.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kessous, R., Shoham-Vardi, I., Pariente, G., Holcberg, G., & Sheiner, E. (2013a). An association between preterm delivery and long-term maternal cardiovascular morbidity. American Journal of Obstetrics and Gynecology, 209(368), e1–e8. doi: 10.1016/j.ajog.2013.05.041.Google Scholar
  28. Kessous, R., Shoham-Vardi, I., Pariente, G., Sherf, M., & Sheiner, E. (2013b). An association between gestational diabetes mellitus and long-term maternal cardiovascular morbidity. Heart, 99, 1118–1121. doi: 10.1136/heartjnl-2013-303945.CrossRefPubMedGoogle Scholar
  29. Kim, S. H., Macari, S., Koller, J., & Chawarska, K. (2015). Examining the phenotypic heterogeneity of early autism spectrum disorder: Subtypes and short-term outcomes. Journal of Child Psychology and Psychiatry, and Allied Disciplines. doi: 10.1111/jcpp.12448.Google Scholar
  30. Kohane, I. S., et al. (2012). The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS ONE, 7, e33224. doi: 10.1371/journal.pone.0033224.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kong, S. W., et al. (2013). Peripheral blood gene expression signature differentiates children with autism from unaffected siblings. Neurogenetics. doi: 10.1007/s10048-013-0363-z.PubMedPubMedCentralGoogle Scholar
  32. Kridin, K., Zelber-Sagi, S., Khamaisi, M., Cohen, A. D., & Bergman, R. (2016). Remarkable differences in the epidemiology of pemphigus among two ethnic populations in the same geographic region. Journal of the American Academy of Dermatology. doi: 10.1016/j.jaad.2016.06.055.PubMedGoogle Scholar
  33. Krumm, N., et al. (2015). Excess of rare, inherited truncating mutations in autism. Nature Genetics, 47, 582–588. doi: 10.1038/ng.3303.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lai, M. C., Lombardo, M. V., Chakrabarti, B., & Baron-Cohen, S. (2013). Subgrouping the autism “spectrum”: Reflections on DSM-5. PLoS Biology, 11, e1001544. doi: 10.1371/journal.pbio.1001544.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Landau, D., Mishori-Dery, A., Hershkovitz, R., Narkis, G., Elbedour, K., & Carmi, R. (2003). A new autosomal recessive congenital contractural syndrome in an Israeli Bedouin kindred. American Journal of Medical Genetics Part A, 117 A, 37–40. doi: 10.1002/ajmg.a.10894.CrossRefGoogle Scholar
  36. Lane, A. E., Molloy, C. A., & Bishop, S. L. (2014). Classification of children with autism spectrum disorder by sensory subtype: A case for sensory-based phenotypes. Autism Research. doi: 10.1002/aur.1368.PubMedGoogle Scholar
  37. Lazarev, I., Flaschner, M., Geffen, D. B., & Ariad, S. (2014). Breast cancer in Bedouin-Arab patients in southern Israel: Epidemiologic and biologic features in comparison with Jewish patients. Asian Pacific Journal of Cancer Prevention: APJCP 15, 7533–7537.CrossRefPubMedGoogle Scholar
  38. Lebel, D. E., Sergienko, R., Wiznitzer, A., Velan, G. J., & Sheiner, E. (2012). Mode of delivery and other pregnancy outcomes of patients with documented scoliosis. The journal of Maternal-Fetal and Neonatal Medicine: The Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet, 25, 639–641. doi: 10.3109/14767058.2011.598587.CrossRefGoogle Scholar
  39. Lenroot, R. K., & Yeung, P. K. (2013). Heterogeneity within autism spectrum disorders: What have we learned from neuroimaging studies? Frontiers in Human Neuroscience, 7, 733. doi: 10.3389/fnhum.2013.00733.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leshem, E., Givon-Lavi, N., Vinje, J., Gregoricus, N., Parashar, U., & Dagan, R. (2015). Differences in norovirus-associated hospital visits between Jewish and Bedouin children in Southern Israel. The Pediatric Infectious Disease Journal, 34, 1036–1038. doi: 10.1097/inf.0000000000000786.CrossRefPubMedGoogle Scholar
  41. Levy, S. E., Mandell, D. S., & Schultz, R. T. (2009). Autism. The Lancet, 374, 1627–1638. doi: 10.1016/s0140-6736(09)61376-3.CrossRefGoogle Scholar
  42. Lord, C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.CrossRefPubMedGoogle Scholar
  43. Lord, C., & Jones, R. M. (2012). Annual research review: Re-thinking the classification of autism spectrum disorders. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 53, 490–509. doi: 10.1111/j.1469-7610.2012.02547.x.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Loth, E., et al. (2016). Identification and validation of biomarkers for autism spectrum disorders. Nature Reviews Drug Discovery 15, 70–3 doi: 10.1038/nrd.2015.7.CrossRefPubMedGoogle Scholar
  45. Loth, E., Spooren, W., & Murphy, D. G. (2014). New treatment targets for autism spectrum disorders: EU-AIMS. The Lancet Psychiatry, 1, 413–415. doi: 10.1016/s2215-0366(14)00004-2.CrossRefPubMedGoogle Scholar
  46. Ministry of Justice, I. (1981). Protection of Privacy Law, 5741.Google Scholar
  47. Na’amnih, W., et al. (2014). Prevalence of consanguineous marriages and associated factors among Israeli Bedouins. Journal of Community Genetics, 5, 395–398. doi: 10.1007/s12687-014-0188-y.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nazeer, A., & Ghaziuddin, M. (2012). Autism spectrum disorders: Clinical features and diagnosis. Pediatric Clinics of North America, 59(19–25), ix. doi: 10.1016/j.pcl.2011.10.007.Google Scholar
  49. O’Roak, B. J., et al. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43, 585–589. doi: 10.1038/ng.835.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Owens, J. A., Spirito, A., & McGuinn, M. (2000). The Children’s Sleep Habits Questionnaire (CSHQ): Psychometric properties of a survey instrument for school-aged children. Sleep, 23, 1043–1051.CrossRefPubMedGoogle Scholar
  51. Pariente, G., Sheiner, E., Kessous, R., Michael, S., & Shoham-Vardi, I. (2013). Association between delivery of a small-for-gestational-age neonate and long-term maternal cardiovascular morbidity. International Journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics, 123, 68–71. doi: 10.1016/j.ijgo.2013.06.008.CrossRefGoogle Scholar
  52. Payakachat, N., Tilford, J. M., & Ungar, W. J. (2015). National Database for Autism Research (NDAR): Big data opportunities for health services research and health technology assessment. PharmacoEconomics. doi: 10.1007/s40273-015-0331-6.PubMedPubMedCentralGoogle Scholar
  53. Ramsey, J. M., et al. (2013). Identification of an age-dependent biomarker signature in children and adolescents with autism spectrum disorders. Molecular Autism: The International Journal of Research and Practice, 4, 27. doi: 10.1186/2040-2392-4-27.CrossRefGoogle Scholar
  54. Ratzon, R., Sheiner, E., & Shoham-Vardi, I. (2011). The role of prenatal care in recurrent preterm birth. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 154, 40–44. doi: 10.1016/j.ejogrb.2010.08.011.CrossRefPubMedGoogle Scholar
  55. Raz, R., Weisskopf, M. G., Davidovitch, M., Pinto, O., & Levine, H. (2014). Differences in autism spectrum disorders incidence by sub-populations in Israel 1992–2009: A total population study. Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-014-2262-z.Google Scholar
  56. Sanders, S. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237–241. doi: 10.1038/nature10945.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Shatzky, S., et al. (2000). Congenital insensitivity to pain with anhidrosis (CIPA) in Israeli-Bedouins: Genetic heterogeneity, novel mutations in the TRKA/NGF receptor gene, clinical findings, and results of nerve conduction studies. American Journal of Medical Genetics, 92, 353–360.CrossRefPubMedGoogle Scholar
  58. Shental, O., Friger, M., & Sheiner, E. (2010). Ethnic differences in the monthly variation of preeclampsia among Bedouin and Jewish parturients in the Negev. Hypertension in Pregnancy, 29, 342–349. doi: 10.3109/10641950902968692.CrossRefPubMedGoogle Scholar
  59. Shimony, A., Afawi, Z., Asher, T., Mahajnah, M., & Shorer, Z. (2009). Epidemiological characteristics of febrile seizures–comparing between Bedouin and Jews in the southern part of Israel. Seizure: The Journal of the British Epilepsy Association, 18, 26–29. doi: 10.1016/j.seizure.2008.05.011.CrossRefGoogle Scholar
  60. Siegel, M., et al. (2015). The autism inpatient collection: Methods and preliminary sample description. Molecular Autism: The International Journal of Research and Practice, 6, 61. doi: 10.1186/s13229-015-0054-8.CrossRefGoogle Scholar
  61. Smirnov, M., Lazarev, I., Perry, Z. H., Ariad, S., & Kirshtein, B. (2016). Colorectal cancer in southern Israel: Comparison between Bedouin Arab and Jewish patients. International Journal of Surgery, 33, 109–116. doi: 10.1016/j.ijsu.2016.07.069.CrossRefPubMedGoogle Scholar
  62. Stoltenberg, C., et al. (2010). The Autism Birth Cohort: A paradigm for gene-environment-timing research. Molecular Psychiatry, 15, 676–680. doi: 10.1038/mp.2009.143.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Treister-Goltzman, Y., Peleg, R., & Biderman, A. (2015). Anemia among Muslim Bedouin and Jewish women of childbearing age in Southern Israel. Annals of Hematology, 94, 1777–1784. doi: 10.1007/s00277-015-2459-z.CrossRefPubMedGoogle Scholar
  64. Volkmar, F. R., Reichow, B., & McPartland, J. (2012). Classification of autism and related conditions: Progress, challenges, and opportunities. Dialogues in Clinical Neuroscience, 14, 229–237.PubMedPubMedCentralGoogle Scholar
  65. Wechsler, D. (1989). Wechsler preschool and primary scale of intelligence—revised. San Antonio, TX: The Psychological Corporation.Google Scholar
  66. Wolff, J. J., et al. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. The American Journal of Psychiatry, 169, 589–600. doi: 10.1176/appi.ajp.2011.11091447.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zwaigenbaum, L., et al. (2014). Early head growth in infants at risk of autism: A baby siblings research consortium study. Journal of the American Academy of Child and Adolescent Psychiatry, 53, 1053–1062. doi: 10.1016/j.jaac.2014.07.007.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Gal Meiri
    • 1
  • Ilan Dinstein
    • 2
    • 3
    • 4
  • Analya Michaelowski
    • 5
  • Hagit Flusser
    • 5
  • Michal Ilan
    • 1
    • 2
  • Michal Faroy
    • 5
  • Asif Bar-Sinai
    • 1
    • 2
  • Liora Manelis
    • 1
    • 2
  • Dana Stolowicz
    • 1
    • 2
  • Lili Lea Yosef
    • 1
    • 6
  • Nadav Davidovitch
    • 7
  • Hava Golan
    • 4
    • 8
  • Shosh Arbelle
    • 1
  • Idan Menashe
    • 4
    • 6
    Email author
  1. 1.Pre-School Psychiatry UnitSoroka University Medical CenterBeer ShevaIsrael
  2. 2.Psychology DepartmentBen-Gurion University of the NegevBeer ShevaIsrael
  3. 3.Cognitive and Brain Sciences DepartmentBen-Gurion University of the NegevBeer ShevaIsrael
  4. 4.Zlotowski Center for NeuroscienceBen-Gurion University of the NegevBeer ShevaIsrael
  5. 5.Zusman Child Development CenterSoroka University Medical CenterBeer ShevaIsrael
  6. 6.Public Health DepartmentBen-Gurion University of the NegevBeer ShevaIsrael
  7. 7.Health Systems Management DepartmentBen-Gurion University of the NegevBeer ShevaIsrael
  8. 8.Physiology and Cell Biology DepartmentBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations