Journal of Autism and Developmental Disorders

, Volume 47, Issue 12, pp 3682–3691 | Cite as

Amygdala Volume Differences in Autism Spectrum Disorder Are Related to Anxiety

  • John D. Herrington
  • Brenna B. Maddox
  • Connor M. Kerns
  • Keiran Rump
  • Julie A. Worley
  • Jennifer C. Bush
  • Alana J. McVey
  • Robert T. Schultz
  • Judith S. Miller
S.I. : Anxiety in Autism Spectrum Disorders


Recent studies suggest that longstanding findings of abnormal amygdala morphology in ASD may be related to symptoms of anxiety. To test this hypothesis, fifty-three children with ASD (mean age = 11.9) underwent structural MRI and were divided into subgroups to compare those with at least one anxiety disorder diagnosis (n = 29) to those without (n = 24) and to a typically developing control group (TDC; n = 37). Groups were matched on age and intellectual level. The ASD and anxiety group showed decreased right amygdala volume (controlled for total brain volume) relative to ASD without anxiety (p = .04) and TDCs (p = .068). Results suggest that youth with ASD and co-occurring anxiety have a distinct neurodevelopmental trajectory.


Amygdala Anxiety disorders Brain morphometry Comorbidity 



We are very grateful to the many families who participated in this research. The design and conduct of the study, collection, management, and analysis were supported by grants from the Pennsylvania Department of Health (SAP # 4100042728 to R. Schultz), the National Institute of Child Health and Development (P30 HD026979, to M. Yudkoff), and National Institute of Mental Health (RC1MH08879 and R01 MH073084-01 to R. Schultz). The data collection, management, and analysis for the manuscript were also supported by funds from Shire Pharmaceuticals. Additionally, R. Schultz reported receiving lecture fees and research funds from Pfizer. Portions of this manuscript were presented at the 14th Annual International Meeting for Autism Research (Salt Lake City, 2015).


The design and conduct of the study, collection, management, and analysis were supported by grants from the Pennsylvania Department of Health (SAP # 4100042728 to R. Schultz), the National Institute of Child Health and Development (P30 HD026979, to M. Yudkoff), and National Institute of Mental Health (RC1MH08879 and R01 MH073084-01 to R. Schultz). The data collection, management, and analysis for the manuscript were also supported by funds from Shire Pharmaceuticals.

Author Contributions

JDH, RTS, and JSM conceived of the study and participated in study design. JDH, BBM, CMK, JAW, JCB, AJM, and JSM participated in data collection. JDH and JSM participated in data analysis. All authors participated in manuscript preparation.

Compliance with Ethical Standards

Conflict of interest

J. Herrington, J. Miller, and R. Schultz reported having received lecture fees and/or research funds from Shire Pharmaceuticals. Additionally, R. Schultz reported receiving research funding from Pfizer. Coauthors Maddox, Kerns, Rump, Worley, Bush, and McVey reported no potential conflicts of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from the parent or legal guardian of all individual participants included in the study, in accordance with the guidelines of the Children’s Hospital of Philadelphia Institutional Review Board.


  1. Aggleton, J. P., & Passingham, R. E. (1981). Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta). Journal of Comparative and Physiological Psychology, 95(6), 961–977.CrossRefPubMedGoogle Scholar
  2. Amaral, D. G. (2002). The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biological Psychiatry, 51(1), 11–17.CrossRefPubMedGoogle Scholar
  3. Amaral, D. G., Bauman, M. D., & Schumann, C. M. (2003). The amygdala and autism: implications from non-human primate studies. Genes, Brain, and Behavior, 2(5), 295–302.CrossRefPubMedGoogle Scholar
  4. Avants, B. B., Tustison, N. J., Stauffer, M., Song, G., Wu, B., & Gee, J. C. (2014). The Insight ToolKit image registration framework. Frontiers in Neuroinformatics. doi: 10.3389/fninf.2014.00044.PubMedPubMedCentralGoogle Scholar
  5. Aylward, E. H., Minshew, N. J., Goldstein, G., Honeycutt, N. A., Augustine, A. M., Yates, K. O., … Pearlson, G. D. (1999). MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology, 53(9), 2145–2150.CrossRefPubMedGoogle Scholar
  6. Baas, D., Aleman, A., & Kahn, R. (2004). Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Research Reviews, 45(2), 96–103.CrossRefPubMedGoogle Scholar
  7. Bauman, M. D., Lavenex, P., Mason, W. A., Capitanio, J. P., & Amaral, D. G. (2004a). The development of mother-infant interactions after neonatal amygdala lesions in rhesus monkeys. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(3), 711–721. doi: 10.1523/JNEUROSCI.3263-03.2004.CrossRefGoogle Scholar
  8. Bauman, M. D., Lavenex, P., Mason, W. A., Capitanio, J. P., & Amaral, D. G. (2004b). The development of social behavior following neonatal amygdala lesions in rhesus monkeys. Journal of Cognitive Neuroscience, 16(8), 1388–1411. doi: 10.1162/0898929042304741.CrossRefPubMedGoogle Scholar
  9. Bickart, K. C., Dickerson, B. C., & Barrett, L. F. (2014). The amygdala as a hub in brain networks that support social life. Neuropsychologia, 63, 235–248. doi: 10.1016/j.neuropsychologia.2014.08.013.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bickart, K. C., Hollenbeck, M. C., Barrett, L. F., & Dickerson, B. C. (2012). Intrinsic amygdala-cortical functional connectivity predicts social network size in humans. The Journal of Neuroscience, 32(42), 14729–14741. doi: 10.1523/JNEUROSCI.1599-12.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala volume and social network size in humans. Nature Neuroscience, 14(2), 163–164. doi: 10.1038/nn.2724.
  12. Birmaher, B., Khetarpal, S., Brent, D., Cully, M., Balach, L., Kaufman, J., & Neer, S. M. (1997). The Screen for Child Anxiety Related Emotional Disorders (SCARED): Scale construction and psychometric characteristics. Journal of the American Academy of Child and Adolescent Psychiatry, 36(4), 545–553. doi: 10.1097/00004583-199704000-00018.CrossRefPubMedGoogle Scholar
  13. Blackmon, K., Barr, W. B., Carlson, C., Devinsky, O., Dubois, J., Pogash, D., … Thesen, T. (2011). Structural evidence for involvement of a left amygdala-orbitofrontal network in subclinical anxiety. Psychiatry Research, 194(3), 296–303. doi: 10.1016/j.pscychresns.2011.05.007.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brothers, L. (1990). The social brain: A project for integrating primate behaviour and neurophysiology in a new domain. Concepts in Neuroscience, 1, 27–51.Google Scholar
  15. Brown, S., & Schafer, E. A. (1888). An investigation into the functions of the occipital and temporal lobes of the monkey’s brain. Philosophical Transactions of the Royal Society of London. B, 179, 303–327.CrossRefGoogle Scholar
  16. Carper, R. A., Moses, P., Tigue, Z. D., & Courchesne, E. (2002). Cerebral lobes in autism: Early hyperplasia and abnormal age effects. NeuroImage, 16(4), 1038–1051.CrossRefPubMedGoogle Scholar
  17. Chandler, S., Charman, T., Baird, G., Simonoff, E., Loucas, T., Meldrum, D., … Pickles, A. (2007). Validation of the social communication questionnaire in a population cohort of children with autism spectrum disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 46(10), 1324–1332. doi: 10.1097/chi.0b013e31812f7d8d.CrossRefGoogle Scholar
  18. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., … Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57(2), 245–254.CrossRefPubMedGoogle Scholar
  19. De Bellis, M. D., Casey, B. J., Dahl, R. E., Birmaher, B., Williamson, D. E., Thomas, K. M., … Ryan, N. D. (2000). A pilot study of amygdala volumes in pediatric generalized anxiety disorder. Biological Psychiatry, 48(1), 51–57.CrossRefPubMedGoogle Scholar
  20. Elliot, C. (2007). The differential abilities scale, Second Edition (2nd ed.). San Antonio, TX: Harcourt Assessments, Inc.Google Scholar
  21. Entis, J. J., Doerga, P., Barrett, L. F., & Dickerson, B. C. (2012). A reliable protocol for the manual segmentation of the human amygdala and its subregions using ultra-high resolution MRI. NeuroImage, 60(2), 1226–1235. doi: 10.1016/j.neuroimage.2011.12.073.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fein, G., & Fein, D. (2013). Subcortical volumes are reduced in short-term and long-term abstinent alcoholics but not those with a comorbid stimulant disorder. NeuroImage Clinical, 3, 47–53. doi: 10.1016/j.nicl.2013.06.018.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fein, G., Greenstein, D., Cardenas, V. A., Cuzen, N. L., Fouche, J.-P., Ferrett, H., … Stein, D. J. (2013). Cortical and subcortical volumes in adolescents with alcohol dependence but without substance or psychiatric comorbidities. Psychiatry Research, 214(1), 1–8. doi: 10.1016/j.pscychresns.2013.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fisler, M. S., Federspiel, A., Horn, H., Dierks, T., Schmitt, W., Wiest, R., … Soravia, L. M. (2013a). Spider phobia is associated with decreased left amygdala volume: a cross-sectional study. BMC Psychiatry, 13, 70. doi: 10.1186/1471-244X-13-70.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fisler, M. S., Federspiel, A., Horn, H., Dierks, T., Schmitt, W., Wiest, R., … Soravia, L. M. (2013b). Spider phobia is associated with decreased left amygdala volume: a cross-sectional study. BMC Psychiatry, 13(1), 70. doi: 10.1186/1471-244X-13-70.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gerritsen, L., Rijpkema, M., van Oostrom, I., Buitelaar, J., Franke, B., Fernández, G., & Tendolkar, I. (2012). Amygdala to hippocampal volume ratio is associated with negative memory bias in healthy subjects. Psychological Medicine, 42(2), 335–343. doi: 10.1017/S003329171100122X.CrossRefPubMedGoogle Scholar
  27. Hayano, F., Nakamura, M., Asami, T., Uehara, K., Yoshida, T., Roppongi, T., … Hirayasu, Y. (2009). Smaller amygdala is associated with anxiety in patients with panic disorder. Psychiatry and Clinical Neurosciences, 63(3), 266–276. doi: 10.1111/j.1440-1819.2009.01960.x.CrossRefPubMedGoogle Scholar
  28. Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., … Piven, J. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Archives of General Psychiatry, 62(12), 1366–1376.CrossRefPubMedGoogle Scholar
  29. Haznedar, M. M., Buchsbaum, M. S., Wei, T. C., Hof, P. R., Cartwright, C., Bienstock, C. A., & Hollander, E. (2000). Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. The American Journal of Psychiatry, 157(12), 1994–2001. doi: 10.1176/appi.ajp.157.12.1994.CrossRefPubMedGoogle Scholar
  30. Herrington, J. D., Miller, J. S., Pandey, J., & Schultz, R. T. (2016). Anxiety and social deficits have distinct relationships with amygdala function in autism spectrum disorder. Social Cognitive and Affective Neuroscience, 11(6), 907–914. doi: 10.1093/scan/nsw015.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Herrington, J. D., Maddox, B. B., McVey, A. J., Franklin, M. E., Yerys, B. E., Miller, J. S., & Schultz, R. T. (2017). Negative valence in autism spectrum disorder: The relationship between amygdala activity, selective attention, and co-occurring anxiety. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. doi: 10.1016/j.bpsc.2017.03.009.
  32. Herz, D. M., Haagensen, B. N., Christensen, M. S., Madsen, K. H., Rowe, J. B., Løkkegaard, A., & Siebner, H. R. (2015). Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans. Brain: A Journal of Neurology, 138(Pt 6), 1658–1666. doi: 10.1093/brain/awv096.CrossRefGoogle Scholar
  33. Howard, M. A., Cowell, P. E., Boucher, J., Broks, P., Mayes, A., Farrant, A., & Roberts, N. (2000). Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. Neuroreport, 11(13), 2931–2935.CrossRefPubMedGoogle Scholar
  34. Juranek, J., Filipek, P. A., Berenji, G. R., Modahl, C., Osann, K., & Spence, M. A. (2006). Association between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children. Journal of Child Neurology, 21(12), 1051–1058.CrossRefPubMedGoogle Scholar
  35. Kazama, A. M., Heuer, E., Davis, M., & Bachevalier, J. (2012). Effects of neonatal amygdala lesions on fear learning, conditioned inhibition, and extinction in adult macaques. Behavioral Neuroscience, 126(3), 392–403. doi: 10.1037/a0028241.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kerns, C. M., & Kendall, P. C. (2012). The presentation and classification of anxiety in autism spectrum disorder. Clinical Psychology: Science and Practice, 19(4), 323–347. doi: 10.1111/cpsp.12009.Google Scholar
  37. Kerns, C. M., Kendall, P. C., Berry, L., Souders, M. C., Franklin, M. E., Schultz, R. T., … Herrington, J. (2014). Traditional and atypical presentations of anxiety in youth with autism spectrum disorder. Journal of Autism and Developmental Disorders, 44(11), 2851–2861. doi: 10.1007/s10803-014-2141-7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kerns, C. M., Maddox, B. B., Kendall, P. C., Rump, K., Berry, L., Schultz, R. T., … Miller, J. (2015). Brief measures of anxiety in non-treatment-seeking youth with autism spectrum disorder. Autism, 19(8), 969–979. doi: 10.1177/1362361314558465.CrossRefPubMedGoogle Scholar
  39. Kling, A. S., & Brothers, L. A. (1992). The amygdala and social behavior. In The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction (pp. 353–377). New York, NY: Wiley-Liss.Google Scholar
  40. Kluver, H., & Bucy, P. (1939). Preliminary analysis of functions of the temporal lobes in monkeys. Archives of Neurology and Psychiatry, 42(6), 979–1000.CrossRefGoogle Scholar
  41. Le Couteur, A., Lord, C., & Rutter, M. (2003). The autism diagnostic interview-revised (ADI-R). Los Angeles, CA: Western Psychological Services.Google Scholar
  42. Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (2002). Autism diagnostic observation schedule. Los Angeles, CA: Western Psychological Services.Google Scholar
  43. Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. L. (2012). Autism diagnostic observation schedule (2nd ed.). Los Angeles, CA: Western Psychological Services.Google Scholar
  44. Massana, G., Serra-Grabulosa, J. M., Salgado-Pineda, P., Gastó, C., Junqué, C., Massana, J., … Salamero, M. (2003). Amygdalar atrophy in panic disorder patients detected by volumetric magnetic resonance imaging. NeuroImage, 19(1), 80–90.CrossRefPubMedGoogle Scholar
  45. Mazefsky, C. A., Herrington, J., Siegel, M., Scarpa, A., Maddox, B. B., Scahill, L., & White, S. W. (2013). The role of emotion regulation in autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 52(7), 679–688. doi: 10.1016/j.jaac.2013.05.006.CrossRefGoogle Scholar
  46. Mazefsky, C. A., & Herrington, J. D. (2014). Autism and anxiety: etiologic factors and transdiagnostic processes. In T. E. Davis III, S. W. White & T. H. Ollendick (Eds.), Handbook of Autism and Anxiety (pp. 91–106). New York, NY : Springer.Google Scholar
  47. Milham, M. P., Nugent, A. C., Drevets, W. C., Dickstein, D. P., Leibenluft, E., Ernst, M., … Pine, D. S. (2005). Selective reduction in amygdala volume in pediatric anxiety disorders: A voxel-based morphometry investigation. Biological Psychiatry, 57(9), 961–966. doi: 10.1016/j.biopsych.2005.01.038.CrossRefPubMedGoogle Scholar
  48. Morey, R. A., Petty, C. M., Xu, Y., Pannu Hayes, J., Wagner, H. R., Lewis, D. V., … McCarthy, G. (2009). A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. NeuroImage, 45(3), 855–866. doi: 10.1016/j.neuroimage.2008.12.033.CrossRefPubMedGoogle Scholar
  49. Morey, R. A., Selgrade, E. S., Wagner, H. R., Huettel, S. A., Wang, L., & McCarthy, G. (2010). Scan-rescan reliability of subcortical brain volumes derived from automated segmentation. Human Brain Mapping. doi: 10.1002/hbm.20973.PubMedPubMedCentralGoogle Scholar
  50. Mosconi, M. W., Cody-Hazlett, H., Poe, M. D., Gerig, G., Gimpel-Smith, R., & Piven, J. (2009). Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism. Archives of General Psychiatry, 66(5), 509–516. doi: 10.1001/archgenpsychiatry.2009.19.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mueller, S. C., Aouidad, A., Gorodetsky, E., Goldman, D., Pine, D. S., & Ernst, M. (2013). Gray matter volume in adolescent anxiety: an impact of the brain-derived neurotrophic factor Val(66)Met polymorphism? Journal of the American Academy of Child and Adolescent Psychiatry, 52(2), 184–195. doi: 10.1016/j.jaac.2012.11.016.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Munson, J., Dawson, G., Abbott, R., Faja, S., Webb, S. J., Friedman, S. D., … Dager, S. R. (2006). Amygdalar volume and behavioral development in autism. Archives of General Psychiatry, 63(6), 686–693. doi: 10.1001/archpsyc.63.6.686.CrossRefPubMedGoogle Scholar
  53. Nacewicz, B. M., Dalton, K. M., Johnstone, T., Long, M. T., McAuliff, E. M., Oakes, T. R., … Davidson, R. J. (2006). Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Archives of General Psychiatry, 63(12), 1417–1428.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage, 56(3), 907–922. doi: 10.1016/j.neuroimage.2011.02.046.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pierce, K., Müller, R. A., Ambrose, J., Allen, G., & Courchesne, E. (2001). Face processing occurs outside the fusiform “face area” in autism: evidence from functional MRI. Brain: A Journal of Neurology, 124(10), 2059–2073.CrossRefGoogle Scholar
  56. Prather, M. D., Lavenex, P., Mauldin-Jourdain, M. L., Mason, W. A., Capitanio, J. P., Mendoza, S. P., & Amaral, D. G. (2001). Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience, 106(4), 653–658.CrossRefPubMedGoogle Scholar
  57. Qin, S., Young, C. B., Duan, X., Chen, T., Supekar, K., & Menon, V. (2014). Amygdala subregional structure and intrinsic functional connectivity predicts individual differences in anxiety during early childhood. Biological Psychiatry, 75(11), 892–900. doi: 10.1016/j.biopsych.2013.10.006.CrossRefPubMedGoogle Scholar
  58. Sacco, R., Gabriele, S., & Persico, A. M. (2015). Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis. Psychiatry Research: Neuroimaging, 234(2), 239–251. doi: 10.1016/j.pscychresns.2015.08.016.CrossRefPubMedGoogle Scholar
  59. Schumann, C. M., Bloss, C. S., Barnes, C. C., Wideman, G. M., Carper, R. A., Akshoomoff, N., … Courchesne, E. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(12), 4419–4427. doi: 10.1523/JNEUROSCI.5714-09.2010.CrossRefGoogle Scholar
  60. Schumann, C. M., Hamstra, J., Goodlin-Jones, B. L., Lotspeich, L. J., Kwon, H., Buonocore, M. H., … Amaral, D. G. (2004). The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(28), 6392–6401. doi: 10.1523/JNEUROSCI.1297-04.2004.CrossRefGoogle Scholar
  61. Schumann, C. M., & Nordahl, C. W. (2011). Bridging the gap between MRI and postmortem research in autism. Brain Research, 1380, 175–186. doi: 10.1016/j.brainres.2010.09.061.CrossRefPubMedGoogle Scholar
  62. Silverman, W. K., Saavedra, L. M., & Pina, A. A. (2001). Test-retest reliability of anxiety symptoms and diagnoses with the Anxiety Disorders Interview Schedule for DSM-IV: Child and parent versions. Journal of the American Academy of Child and Adolescent Psychiatry, 40(8), 937–944.CrossRefPubMedGoogle Scholar
  63. Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T., & Baird, G. (2008). Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population-derived sample. Journal of the American Academy of Child and Adolescent Psychiatry, 47(8), 921–929. doi: 10.1097/CHI.0b013e318179964f.CrossRefPubMedGoogle Scholar
  64. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. doi: 10.1002/hbm.10062.CrossRefPubMedGoogle Scholar
  65. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208–S219.CrossRefPubMedGoogle Scholar
  66. Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., … Dager, S. R. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59(2), 184–192.CrossRefPubMedGoogle Scholar
  67. Stanfield, A. C., McIntosh, A. M., Spencer, M. D., Philip, R., Gaur, S., & Lawrie, S. M. (2008). Towards a neuroanatomy of autism: A systematic review and meta-analysis of structural magnetic resonance imaging studies. European Psychiatry, 23(4), 289–299. doi: 10.1016/j.eurpsy.2007.05.006.CrossRefPubMedGoogle Scholar
  68. Sukhodolsky, D. G., Scahill, L., Gadow, K. D., Arnold, L. E., Aman, M. G., McDougle, C. J., … Vitiello, B. (2008). Parent-rated anxiety symptoms in children with pervasive developmental disorders: frequency and association with core autism symptoms and cognitive functioning. Journal of Abnormal Child Psychology, 36(1), 117–128.CrossRefPubMedGoogle Scholar
  69. Swanson, L. W., & Petrovich, G. D. (1998). What is the amygdala? Trends in Neurosciences, 21(8), 323–331.CrossRefPubMedGoogle Scholar
  70. Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320. doi: 10.1109/TMI.2010.2046908.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tyszka, J. M., & Pauli, W. M. (2016). In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template: In Vivo Amygdala Subdivisions. Human Brain Mapping. doi: 10.1002/hbm.23289.PubMedPubMedCentralGoogle Scholar
  72. van der Plas, E. A. A., Boes, A. D., Wemmie, J. A., Tranel, D., & Nopoulos, P. (2010). Amygdala volume correlates positively with fearfulness in normal healthy girls. Social Cognitive and Affective Neuroscience, 5(4), 424–431. doi: 10.1093/scan/nsq009.CrossRefPubMedPubMedCentralGoogle Scholar
  73. van Steensel, F. J. A., Bögels, S. M., & Perrin, S. (2011). Anxiety disorders in children and adolescents with autistic spectrum disorders: a meta-analysis. Clinical Child and Family Psychology Review, 14(3), 302–317. doi: 10.1007/s10567-011-0097-0.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Whalen, P. J., & Phelps, E. A. (Eds.). (2009). The human amygdala. New York: Guilford Press.Google Scholar
  75. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381–397. doi: 10.1016/j.neuroimage.2014.01.060.CrossRefGoogle Scholar
  76. Wood, J. J., & Gadow, K. D. (2010). Exploring the nature and function of anxiety in youth with autism spectrum disorders. Clinical Psychology: Science and Practice, 17(4), 281–292. doi: 10.1111/j.1468-2850.2010.01220.x.Google Scholar
  77. Yang, R. J., Mozhui, K., Karlsson, R.-M., Cameron, H. A., Williams, R. W., & Holmes, A. (2008). Variation in mouse basolateral amygdala volume is associated with differences in stress reactivity and fear learning. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 33(11), 2595–2604. doi: 10.1038/sj.npp.1301665.CrossRefGoogle Scholar
  78. Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23(2–3), 143–152. doi: 10.1016/j.ijdevneu.2004.05.001.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • John D. Herrington
    • 1
    • 2
  • Brenna B. Maddox
    • 1
  • Connor M. Kerns
    • 4
    • 5
  • Keiran Rump
    • 2
  • Julie A. Worley
    • 6
  • Jennifer C. Bush
    • 7
  • Alana J. McVey
    • 8
  • Robert T. Schultz
    • 1
    • 2
    • 3
  • Judith S. Miller
    • 1
    • 2
  1. 1.Center for Autism ResearchThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Pediatrics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.AJ Drexel Autism Institute & Community Health & Prevention, School of Public HealthDrexel UniversityPhiladelphiaUSA
  5. 5.Center for Health InnovationAdelphi UniversityGarden CityUSA
  6. 6.SPIN IncPhiladelphiaUSA
  7. 7.Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA
  8. 8.Department of PsychologyMarquette UniversityMilwaukeeUSA

Personalised recommendations