Journal of Autism and Developmental Disorders

, Volume 47, Issue 4, pp 1183–1192 | Cite as

Quantitative Sensory Testing in adults with Autism Spectrum Disorders

  • Odette Fründt
  • Wiebke Grashorn
  • Daniel Schöttle
  • Ina Peiker
  • Nicole David
  • Andreas K. Engel
  • Katarina Forkmann
  • Nathalie Wrobel
  • Alexander Münchau
  • Ulrike Bingel
Original Paper


Altered sensory perception has been found in patients with autism spectrum disorders (ASD) and might be related to aberrant sensory perception thresholds. We used the well-established, standardized Quantitative sensory testing (QST) protocol of the German Research Network on Neuropathic Pain to investigate 13 somatosensory parameters including thermal and tactile detection and pain thresholds in 13 ASD adults and 13 matched healthy controls with normal IQ values. There were no group differences between somatosensory detection and pain thresholds. Two ASD patients showed paradoxical heat sensations and another two ASD subjects presented dynamic mechanical allodynia; somatosensory features that were absent in controls. These findings suggest that central mechanisms during complex stimulus integration rather than peripheral dysfunctions probably determine somatosensory alterations in ASD.


Autism Quantitative sensory testing Sensory thresholds Hyposensitivity Hypersensitivity 



This work was supported by the Else Kröner-Fresenius-Stiftung (Grant 2011_A37; A.M.) and by the EU (FP7-ICT-270212, ERC-2010-AdG-269716, H2020-641321; A.K.E.). We would like to thank all the patients investigated in this study for their support and commitment. Thanks to Jan Vollert (University Medical Center Bochum) and Tina Mainka (University Medical Center Hamburg-Eppendorf) for their advice.

Author Contributions

OF and WG equally participated in the conception and design of the study, performed data acquisition, analysis and interpretation, drafted and reviewed the manuscript. DS, IP, ND, AM and AKE participated in the conception and design of the study, performed data interpretation and manuscript revision for important intellectual content. KF and NW participated in the conception and design of the study, performed data analysis and interpretation as well as manuscript revision for important intellectual content. UB participated in the conception and design of the study, performed data interpretation and manuscript drafting as well as manuscript revision for important intellectual content. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

All authors declare that there are no conflicts of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Human and Animal Research Information

Our research involved human participants.

Informed Consent

Informed consent was obtained from all individual participants included in the study. They were told to be free to withdraw from the study at any time.

Supplementary material

10803_2017_3041_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 25 KB)


  1. American Psychiatric Association, A. (2000). Diagnostic and statistical manual of mental disorders Dsm-IV-Tr (Text Revision) (4th ed.). Washington, DC: American Psychiatric Press Inc.Google Scholar
  2. APA (2013). Diagnostic and statistical manual of mental disorders (DSM-5(r)).Google Scholar
  3. Baron, R., & Saguer, M. (1995). Mechanical allodynia in postherpetic neuralgia: evidence for central mechanisms depending on nociceptive C-fiber degeneration. Neurology, 45(12 Suppl 8), S63–65.CrossRefPubMedGoogle Scholar
  4. Baron-Cohen, S., Ashwin, E., Ashwin, C., Tavassoli, T., & Chakrabarti, B. (2009). Talent in autism: hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1377–1383. doi: 10.1098/rstb.2008.0337.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baron-Cohen, S., Hoekstra, R. A., Knickmeyer, R., & Wheelwright, S. (2006). The autism-spectrum quotient (AQ)–adolescent version. Journal of Autism and Developmental Disorders, 36(3), 343–350. doi: 10.1007/s10803-006-0073-6.CrossRefPubMedGoogle Scholar
  6. Baron-Cohen, S., Richler, J., Bisarya, D., Gurunathan, N., & Wheelwright, S. (2003). The systemizing quotient: an investigation of adults with Asperger syndrome or high-functioning autism, and normal sex differences. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1430), 361–374. doi: 10.1098/rstb.2002.1206.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: an investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163–175.CrossRefPubMedGoogle Scholar
  8. Baum, S. H., Stevenson, R. A., & Wallace, M. T. (2015). Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Progress in Neurobiology, 134, 140–160. doi: 10.1016/j.pneurobio.2015.09.007.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561–571.CrossRefPubMedGoogle Scholar
  10. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2003). Motion perception in autism: A “complex” issue. Journal of Cognitive Neuroscience, 15(2), 218–225. doi: 10.1162/089892903321208150.CrossRefPubMedGoogle Scholar
  11. Bird, G., Silani, G., Brindley, R., White, S., Frith, U., & Singer, T. (2010). Empathic brain responses in insula are modulated by levels of alexithymia but not autism. Brain: A Journal of Neurology, 133(Pt 5), 1515–1525. doi: 10.1093/brain/awq060.CrossRefGoogle Scholar
  12. Blakemore, S. J., Tavassoli, T., Calo, S., Thomas, R. M., Catmur, C., Frith, U., et al. (2006). Tactile sensitivity in asperger syndrome. Brain and Cognition, 61(1), 5–13. doi: 10.1016/j.bandc.2005.12.013.CrossRefPubMedGoogle Scholar
  13. Cascio, C., McGlone, F., Folger, S., Tannan, V., Baranek, G., Pelphrey, K. A., et al. (2008). Tactile perception in adults with autism: A multidimensional psychophysical study. Journal of Autism and Developmental Disorders, 38(1), 127–137. doi: 10.1007/s10803-007-0370-8.CrossRefPubMedGoogle Scholar
  14. Cesaroni, L., & Garber, M. (1991). Exploring the experience of autism through firsthand accounts. Journal of Autism and Developmental Disorders, 21(3), 303–313.CrossRefPubMedGoogle Scholar
  15. Craig, A. D., & Bushnell, M. C. (1994). The thermal grill illusion: Unmasking the burn of cold pain. Science, 265(5169), 252–255.CrossRefPubMedGoogle Scholar
  16. David, N., Schneider, T. R., Peiker, I., Al-Jawahiri, R., Engel, A. K., & Milne, E. (2016). Variability of cortical oscillation patterns: A possible endophenotype in autism spectrum disorders? Neuroscience and Biobehavioral Reviews, 71, 590–600. doi: 10.1016/j.neubiorev.2016.09.031.CrossRefPubMedGoogle Scholar
  17. Davis, K. D., Pope, G. E., Crawley, A. P., & Mikulis, D. J. (2004). Perceptual illusion of “paradoxical heat” engages the insular cortex. Journal of Neurophysiology, 92(2), 1248–1251. doi: 10.1152/jn.00084.2004.CrossRefPubMedGoogle Scholar
  18. Di Martino, A., Ross, K., Uddin, L. Q., Sklar, A. B., Castellanos, F. X., & Milham, M. P. (2009). Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis. Biological Psychiatry, 65(1), 63–74. doi: 10.1016/j.biopsych.2008.09.022.CrossRefPubMedGoogle Scholar
  19. Duerden, E. G., Taylor, M. J., Lee, M., McGrath, P. A., Davis, K. D., & Roberts, W. (2015). Decreased sensitivity to thermal stimuli in adolescents with autism spectrum disorder: Relation to symptomatology and cognitive ability. The Journal of Pain: Official Journal of the American Pain Society. doi: 10.1016/j.jpain.2015.02.001.Google Scholar
  20. Elwin, M., Ek, L., Schroder, A., & Kjellin, L. (2012). Autobiographical accounts of sensing in Asperger syndrome and high-functioning autism. Archives of Psychiatric Nursing, 26(5), 420–429. doi: 10.1016/j.apnu.2011.10.003.CrossRefPubMedGoogle Scholar
  21. Fan, Y. T., Chen, C., Chen, S. C., Decety, J., & Cheng, Y. (2014). Empathic arousal and social understanding in individuals with autism: Evidence from fMRI and ERP measurements. Social Cognitive and Affective Neuroscience, 9(8), 1203–1213. doi: 10.1093/scan/nst101.CrossRefPubMedGoogle Scholar
  22. Gierthmühlen, J., & Baron, R. (2013). Vom Symptom zur Therapie. In R. Baron, W. Koppert, M. Strumpf & A. Willweber-Strumpf (Eds.), Praktische Schmerzmedizin - Interdisziplinäre Diagnostik - Multimodale Therapie (Vol. 3, pp. 67–79). Berlin Heidelberg: Springer-Verlag Berlin Heidelberg.Google Scholar
  23. Grandin, T. (1995). Thinking in pictures; and other reports from my life with autism. New York: Double Day.Google Scholar
  24. Grone, E., Crispin, A., Fleckenstein, J., Irnich, D., Treede, R. D., & Lang, P. M. (2012). Test order of quantitative sensory testing facilitates mechanical hyperalgesia in healthy volunteers. The Journal of Pain: Official Journal of the American Pain Society, 13(1), 73–80. doi: 10.1016/j.jpain.2011.10.005.CrossRefGoogle Scholar
  25. Guclu, B., Tanidir, C., Mukaddes, N. M., & Unal, F. (2007). Tactile sensitivity of normal and autistic children. Somatosensory and Motor Research, 24(1–2), 21–33. doi: 10.1080/08990220601179418.CrossRefPubMedGoogle Scholar
  26. Hoitsma, E., Reulen, J. P., de Baets, M., Drent, M., Spaans, F., & Faber, C. G. (2004). Small fiber neuropathy: a common and important clinical disorder. Journal of the Neurological Sciences, 227(1), 119–130. doi: 10.1016/j.jns.2004.08.012.CrossRefPubMedGoogle Scholar
  27. Jensen, T. S., & Finnerup, N. B. (2014). Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurology, 13(9), 924–935. doi: 10.1016/S1474-4422(14)70102-4.CrossRefPubMedGoogle Scholar
  28. Joshi, G., Wozniak, J., Petty, C., Martelon, M. K., Fried, R., Bolfek, A., et al. (2013). Psychiatric comorbidity and functioning in a clinically referred population of adults with autism spectrum disorders: a comparative study. Journal of Autism and Developmental Disorders, 43(6), 1314–1325. doi: 10.1007/s10803-012-1679-5.CrossRefPubMedGoogle Scholar
  29. Kientz, M. A., & Dunn, W. (1997). A comparison of the performance of children with and without autism on the Sensory Profile. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 51(7), 530–537.CrossRefGoogle Scholar
  30. Klauenberg, S., Maier, C., Assion, H. J., Hoffmann, A., Krumova, E. K., Magerl, W., et al. (2008). Depression and changed pain perception: Hints for a central disinhibition mechanism. Pain, 140(2), 332–343. doi: 10.1016/j.pain.2008.09.003.CrossRefPubMedGoogle Scholar
  31. Lehrl, S. (2005). Mehrfachwach-Wortschatz-Intelligenztest MWT-B (5th edition ed.). Balingen: Spitta Verlag.Google Scholar
  32. Magerl, W., & Klein, T. (2006). Experimental human models of neuropathic pain. In F. Cervero, & T. S. Jensen (Ed.), Handbook of clinical neurology (Vol. 81 Pain, pp. 503–516). Edinburgh: Elsevier.Google Scholar
  33. Magerl, W., Krumova, E. K., Baron, R., Tolle, T., Treede, R. D., & Maier, C. (2010). Reference data for quantitative sensory testing (QST): Refined stratification for age and a novel method for statistical comparison of group data. Pain, 151(3), 598–605. doi: 10.1016/j.pain.2010.07.026.CrossRefPubMedGoogle Scholar
  34. Marco, E. J., Hinkley, L. B., Hill, S. S., & Nagarajan, S. S. (2011). Sensory processing in autism: a review of neurophysiologic findings. Pediatric Research, 69(5 Pt 2), 48R–54R, doi: 10.1203/PDR.0b013e3182130c54.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Milne, E. (2011). Increased intra-participant variability in children with autistic spectrum disorders: evidence from single-trial analysis of evoked EEG. Front Psychol, 2, 51. doi: 10.3389/fpsyg.2011.00051.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Minshew, N., & Goldstein, G. (1998). Autism as a disorder of complex information processing. Mental Retardation and Developmental Disabilities Research Reviews, 4(2), 129–136. doi: 10.1002/(SICI)1098-2779(1998)4:2<129::AID-MRDD10>3.0.CO;2-X.CrossRefGoogle Scholar
  37. Moore, D. J. (2015). Acute pain experience in individuals with autism spectrum disorders: A review. Autism: The International Journal of Research and Practice, 19(4), 387–399. doi: 10.1177/1362361314527839.CrossRefGoogle Scholar
  38. Mucke, M., Cuhls, H., Radbruch, L., Baron, R., Maier, C., Tolle, T., et al. (2014). [Quantitative sensory testing]. Schmerz, 28(6), 635–646. doi: 10.1007/s00482-014-1485-4.CrossRefPubMedGoogle Scholar
  39. O’Riordan, M., & Passetti, F. (2006). Discrimination in autism within different sensory modalities. Journal of Autism and Developmental Disorders, 36(5), 665–675. doi: 10.1007/s10803-006-0106-1.CrossRefPubMedGoogle Scholar
  40. Puts, N. A., Wodka, E. L., Tommerdahl, M., Mostofsky, S. H., & Edden, R. A. (2014). Impaired tactile processing in children with autism spectrum disorder. Journal of Neurophysiology, 111(9), 1803–1811. doi: 10.1152/jn.00890.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Riquelme, I., Hatem, S. M., & Montoya, P. (2016). Abnormal pressure pain, touch sensitivity, proprioception, and manual dexterity in children with autism spectrum disorders. Neural Plasticity, 2016, 1723401. doi: 10.1155/2016/1723401.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rolke, R., Andrews, K., Magerl, W., & Treede, R. -D. (2010). Investigator’s Brochure: A standardized battery of quantitative sensory testing according to the protocol of the German Research Network on neuropathic pain (DFNS) - Version 2.1.Google Scholar
  43. Rolke, R., Baron, R., Maier, C., Tolle, T. R., Treede, R. D., Beyer, A., et al. (2006). Quantitative sensory testing in the German research network on neuropathic pain (DFNS): standardized protocol and reference values. Pain, 123(3), 231–243. doi: 10.1016/j.pain.2006.01.041.CrossRefPubMedGoogle Scholar
  44. Sandkuhler, J. (2009). Models and mechanisms of hyperalgesia and allodynia. Physiological Reviews, 89(2), 707–758. doi: 10.1152/physrev.00025.2008.CrossRefPubMedGoogle Scholar
  45. Schneider, G., Pogatzki-Zahn, E., Marziniak, M., Stumpf, A., & Ständer, S. (2015). Cutaneous sensory function is not related to depression and anxiety in patients with chronic pruritus with dysesthetic subqualities. Acta Dermato Venereologica, 95, 289–293.CrossRefPubMedGoogle Scholar
  46. Schunke, O., Grashorn, W., Kahl, U., Schottle, D., Haggard, P., Munchau, A., et al. (2016). Quantitative sensory testing in adults with tourette syndrome. Parkinsonism & Related Disorders, 24, 132–136. doi: 10.1016/j.parkreldis.2016.01.006.CrossRefGoogle Scholar
  47. Siegel, D. J., Minshew, N. J., & Goldstein, G. (1996). Wechsler IQ profiles in diagnosis of high-functioning autism. Journal of Autism and Developmental Disorders, 26(4), 389–406.CrossRefPubMedGoogle Scholar
  48. Silva, L. M., & Schalock, M. (2012). Sense and self-regulation checklist, a measure of comorbid autism symptoms: initial psychometric evidence. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 66(2), 177–186. doi: 10.5014/ajot.2012.001578.CrossRefGoogle Scholar
  49. Silva, L. M., & Schalock, M. (2013). Prevalence and significance of abnormal tactile responses in young children with autism. North American Journal of Medicine and Science, 6 (No.3), 121–127.Google Scholar
  50. Susser, E., Sprecher, E., & Yarnitsky, D. (1999). Paradoxical heat sensation in healthy subjects: Peripherally conducted by A delta or C fibres? Brain, 122 (Pt 2), 239–246.CrossRefPubMedGoogle Scholar
  51. Tavassoli, T., Bellesheim, K., Tommerdahl, M., Holden, J. M., Kolevzon, A., & Buxbaum, J. D. (2015). Altered tactile processing in children with autism spectrum disorder. Autism Research. doi: 10.1002/aur.1563.PubMedGoogle Scholar
  52. Tonacci, A., Billeci, L., Tartarisco, G., Ruta, L., Muratori, F., Pioggia, G., et al. (2017). [Formula: see text] Olfaction in autism spectrum disorders: A systematic review. Child neuropsychology: A Journal on Normal and Abnormal Development in Childhood and Adolescence, 23(1), 1–25. doi: 10.1080/09297049.2015.1081678.CrossRefGoogle Scholar
  53. Uddin, L. Q., & Menon, V. (2009). The anterior insula in autism: under-connected and under-examined. Neuroscience and Biobehavioral Reviews, 33(8), 1198–1203. doi: 10.1016/j.neubiorev.2009.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wahren, L. K., Torebjork, E., & Jorum, E. (1989). Central suppression of cold-induced C fibre pain by myelinated fibre input. Pain, 38(3), 313–319.CrossRefPubMedGoogle Scholar
  55. Yasuda, Y., Hashimoto, R., Nakae, A., Kang, H., Ohi, K., Yamamori, H., et al. (2016). Sensory cognitive abnormalities of pain in autism spectrum disorder: A case–control study. Ann Gen Psychiatry, 15, 8. doi: 10.1186/s12991-016-0095-1.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Odette Fründt
    • 1
  • Wiebke Grashorn
    • 1
  • Daniel Schöttle
    • 2
  • Ina Peiker
    • 3
    • 4
  • Nicole David
    • 4
  • Andreas K. Engel
    • 4
  • Katarina Forkmann
    • 1
    • 5
  • Nathalie Wrobel
    • 1
  • Alexander Münchau
    • 1
    • 6
  • Ulrike Bingel
    • 1
    • 5
  1. 1.Department of NeurologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of PsychiatryUniversity Medical Center Hamburg-EppendorfHamburgGermany
  3. 3.Department of PsychiatryUniversity Medical Center HeidelbergHeidelbergGermany
  4. 4.Department of Neurophysiology and PathophysiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  5. 5.Department of NeurologyUniversity Hospital Essen, University Duisburg-EssenEssenGermany
  6. 6.Department of Pediatric and Adult Movement Disorders and Neuropsychiatry, Institute of NeurogeneticsUniversity of LübeckLübeckGermany

Personalised recommendations