Advertisement

Journal of Autism and Developmental Disorders

, Volume 47, Issue 2, pp 480–489 | Cite as

Gut Microbiota and Autism: Key Concepts and Findings

  • Helen T. DingEmail author
  • Ying Taur
  • John T. Walkup
Original Paper

Abstract

There is an emerging body of evidence linking the intestinal microbiota with autism spectrum disorders (ASD). Studies have demonstrated differences in the composition of gut bacteria between children with ASD and controls. Certain intestinal bacteria have been observed in abundance and may be involved in the pathogenesis of ASD; including members of the Clostridium and Sutterella genus. Evidence from animal models suggest that certain microbial shifts in the gut may produce changes consistent with the clinical picture of autism, with proposed mechanisms including toxin production, aberrations in fermentation processes/products, and immunological and metabolic abnormalities. In this article, we review studies examining the relationship between intestinal bacteria and ASD, and discuss bacterial species that may be implicated and proposed mechanisms.

Keywords

Autism Autism spectrum disorder (ASD) Regressive autism Gastrointestinal symptoms Microbiota Microbiome 

Notes

Author Contributions

HD was the primary writer. YT and JW participated in the drafting and editing of the manuscript. The final version of the manuscript was approved by all authors.

Compliance with Ethical Standards

Conflict of interest

Dr. Ding declares that she has no conflict of interest. Dr. Taur declares that he has no conflict of interest. Dr. Walkup has received free drug/placebo from the following pharmaceutical companies for National Institute of Mental Health funded studies Eli Lilly (2003), Pfizer (2007), Abbott (2005). Dr. Walkup was paid for a one time consultation with Shire (2011). Dr. Walkup is a paid speaker for the Tourette Syndrome-Center for Disease Control and Prevention outreach educational programs; American Academy of Child and Adolescent Psychiatry, American Psychiatric Association. Dr. Walkup receives royalties for books on Tourette syndrome from Guilford Press and Oxford Press. Dr. Walkup receives grant funding from the Hartwell Foundation and the Tourette Syndrome Association, and is an unpaid advisor to Anxiety Disorders Association of America, Consumer Reports, and Trichotillomania Learning Center.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D., & Rubin, R. A. (2011). Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterology, 11, 22. doi: 10.1186/1471-230X-11-22.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arndt, T. L., Stodgell, C. J., & Rodier, P. M. (2005). The teratology of autism. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 23(2–3), 189–199. doi:10.1016/j.ijdevneu.2004.11.001.CrossRefGoogle Scholar
  3. Ashwood, P., Krakowiak, P., Hertz-Picciotto, I., Hansen, R., Pessah, I., & Van de Water, J. (2011). Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain, Behavior, and Immunity, 25(1), 40–45. doi: 10.1016/j.bbi.2010.08.003.CrossRefPubMedGoogle Scholar
  4. Barger, B. D., Campbell, J. M., & McDonough, J. D. (2013). Prevalence and onset of regression within autism spectrum disorders: A meta-analytic review. Journal of Autism and Developmental Disorders, 43(4), 817–828. doi: 10.1007/s10803-012-1621-x.CrossRefPubMedGoogle Scholar
  5. Bessis, A., Bechade, C., Bernard, D., & Roumier, A. (2007). Microglial control of neuronal death and synaptic properties. Glia, 55(3), 233–238. doi: 10.1002/glia.20459.CrossRefPubMedGoogle Scholar
  6. Bolte, E. R. (1998). Autism and Clostridium tetani. Medical Hypotheses, 51(2), 133–144.CrossRefPubMedGoogle Scholar
  7. Buie, T., Campbell, D. B., Fuchs, G. J. 3rd, Furuta, G. T., Levy, J., Vandewater, J.,… Winter, H. (2010). Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: A consensus report. Pediatrics, 125(Suppl 1), S1–S18. doi: 10.1542/peds.2009-1878C.CrossRefPubMedGoogle Scholar
  8. Centers for Disease Control and Prevention, Autism and Developmental Disabilities Monitoring Network Surveillance. (2014). Prevalence of autism spectrum disorder among children aged 8 years: Autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveillance Summaries, 63(2), 1–21.Google Scholar
  9. De Angelis, M., Piccolo, M., Vannini, L., Siragusa, S., De Giacomo, A., Serrazzanetti, D. I.,… Francavilla, R. (2013). Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One, 8(10), e76993. doi: 10.1371/journal.pone.0076993.CrossRefPubMedPubMedCentralGoogle Scholar
  10. de Magistris, L., Familiari, V., Pascotto, A., Sapone, A., Frolli, A., Iardino, P.,… Bravaccio, C. (2010). Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. Journal of Pediatric Gastroenterology and Nutrition, 51(4), 418–424. doi: 10.1097/MPG.0b013e3181dcc4a5.CrossRefPubMedGoogle Scholar
  11. DiCicco-Bloom, E., Lord, C., Zwaigenbaum, L., Courchesne, E., Dager, S. R., Schmitz, C.,… Young, L. J. (2006). The developmental neurobiology of autism spectrum disorder. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(26), 6897–6906. doi: 10.1523/JNEUROSCI.1712-06.2006.CrossRefGoogle Scholar
  12. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M.,… Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308(5728), 1635–1638. doi: 10.1126/science.1110591.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fasano, A. (2012). Leaky gut and autoimmune diseases. Clinical Reviews in Allergy & Immunology, 42(1), 71–78. doi: 10.1007/s12016-011-8291-x.CrossRefGoogle Scholar
  14. Finegold, S. M., Dowd, S. E., Gontcharova, V., Liu, C., Henley, K. E., Wolcott, R. D.,… Green, J. A. 3rd (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe, 16(4), 444–453. doi: 10.1016/j.anaerobe.2010.06.008.CrossRefPubMedGoogle Scholar
  15. Finegold, S. M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M. L., Bolte, E.,… Kaul, A. (2002). Gastrointestinal microflora studies in late-onset autism. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 35(Suppl 1), S6–S16. doi: 10.1086/341914.CrossRefGoogle Scholar
  16. Gabriele, S., Sacco, R., Cerullo, S., Neri, C., Urbani, A., Tripi, G.,… Persico, A. M. (2014). Urinary p-cresol is elevated in young French children with autism spectrum disorder: A replication study. Biomarkers: Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals, 19(6), 463–470. doi: 10.3109/1354750X.2014.936911.CrossRefGoogle Scholar
  17. Goehler, L. E., Park, S. M., Opitz, N., Lyte, M., & Gaykema, R. P. (2008). Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: Possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain, Behavior, and Immunity, 22(3), 354–366. doi: 10.1016/j.bbi.2007.08.009.CrossRefPubMedGoogle Scholar
  18. Hollander, D. (1999). Intestinal permeability, leaky gut, and intestinal disorders. Current Gastroenterology Reports, 1(5), 410–416.CrossRefPubMedGoogle Scholar
  19. Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273. doi: 10.1126/science.1223490.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T.,… Mazmanian, S. K. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463. doi: 10.1016/j.cell.2013.11.024.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. doi: 10.1038/nature11234.CrossRefGoogle Scholar
  22. Kang, D. W., Park, J. G., Ilhan, Z. E., Wallstrom, G., Labaer, J., Adams, J. B., & Krajmalnik-Brown, R. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One, 8(7), e68322. doi: 10.1371/journal.pone.0068322.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kohane, I. S., McMurry, A., Weber, G., MacFadden, D., Rappaport, L., Kunkel, L.,… Churchill, S. (2012). The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS One, 7(4), e33224. doi: 10.1371/journal.pone.0033224.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M.,… Malik, M. (2009). Elevated immune response in the brain of autistic patients. Journal of Neuroimmunology, 207(1–2), 111–116. doi: 10.1016/j.jneuroim.2008.12.002.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Macfabe, D. F. (2012). Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microbial Ecology in Health and Disease, 23. doi: 10.3402/mehd.v23i0.19260.
  26. Ming, X., Stein, T. P., Barnes, V., Rhodes, N., & Guo, L. (2012). Metabolic perturbance in autism spectrum disorders: A metabolomics study. Journal of Proteome Research, 11(12), 5856–5862. doi: 10.1021/pr300910n.PubMedGoogle Scholar
  27. Morgan, J. T., Chana, G., Pardo, C. A., Achim, C., Semendeferi, K., Buckwalter, J.,… Everall, I. P. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry, 68(4), 368–376. doi: 10.1016/j.biopsych.2010.05.024.CrossRefPubMedGoogle Scholar
  28. Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267. doi: 10.1126/science.1223813.CrossRefPubMedGoogle Scholar
  29. Nikolov, R. N., Bearss, K. E., Lettinga, J., Erickson, C., Rodowski, M., Aman, M. G.,… Scahill, L. (2009). Gastrointestinal symptoms in a sample of children with pervasive developmental disorders. Journal of Autism and Developmental Disorders, 39(3), 405–413. doi: 10.1007/s10803-008-0637-8.CrossRefPubMedGoogle Scholar
  30. O’Mahony, S. M., Hyland, N. P., Dinan, T. G., & Cryan, J. F. (2011). Maternal separation as a model of brain–gut axis dysfunction. Psychopharmacology, 214(1), 71–88. doi: 10.1007/s00213-010-2010-9.CrossRefPubMedGoogle Scholar
  31. O’Mahony, S. M., Marchesi, J. R., Scully, P., Codling, C., Ceolho, A. M., Quigley, E. M.,… Dinan, T. G. (2009). Early life stress alters behavior, immunity, and microbiota in rats: Implications for irritable bowel syndrome and psychiatric illnesses. Biological Psychiatry, 65(3), 263–267. doi: 10.1016/j.biopsych.2008.06.026.CrossRefPubMedGoogle Scholar
  32. Onore, C., Careaga, M., & Ashwood, P. (2012). The role of immune dysfunction in the pathophysiology of autism. Brain, Behavior, and Immunity, 26(3), 383–392. doi: 10.1016/j.bbi.2011.08.007.CrossRefPubMedGoogle Scholar
  33. Paolicelli, R. C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P.,… Gross, C. T. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science, 333(6048), 1456–1458. doi: 10.1126/science.1202529.CrossRefPubMedGoogle Scholar
  34. Pardo, C. A., Buckley, A., Thurm, A., Lee, L. C., Azhagiri, A., Neville, D. M., & Swedo, S. E. (2013). A pilot open-label trial of minocycline in patients with autism and regressive features. Journal of Neurodevelopmental Disorders, 5(1), 9. doi: 10.1186/1866-1955-5-9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Parracho, H. M., Bingham, M. O., Gibson, G. R., & McCartney, A. L. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. Journal of Medical Microbiology, 54(Pt 10), 987–991. doi: 10.1099/jmm.0.46101-0.CrossRefPubMedGoogle Scholar
  36. Penders, J., Thijs, C., van den Brandt, P. A., Kummeling, I., Snijders, B., Stelma, F.,… Stobberingh, E. E. (2007). Gut microbiota composition and development of atopic manifestations in infancy: The KOALA Birth Cohort Study. Gut, 56(5), 661–667. doi: 10.1136/gut.2006.100164.CrossRefPubMedGoogle Scholar
  37. Persico, A. M., & Napolioni, V. (2013). Urinary p-cresol in autism spectrum disorder. Neurotoxicology and Teratology, 36, 82–90. doi: 10.1016/j.ntt.2012.09.002.CrossRefPubMedGoogle Scholar
  38. Pirbaglou, M., Katz, J., de Souza, R. J., Stearns, J. C., Motamed, M., & Ritvo, P. (2016). Probiotic supplementation can positively affect anxiety and depressive symptoms: A systematic review of randomized controlled trials. Nutrition Research, 36(9), 889–898. doi: 10.1016/j.nutres.2016.06.009.CrossRefPubMedGoogle Scholar
  39. Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S.,… Crews, F. T. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 55(5), 453–462. doi: 10.1002/glia.20467.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sandler, R. H., Finegold, S. M., Bolte, E. R., Buchanan, C. P., Maxwell, A. P., Vaisanen, M. L.,… Wexler, H. M. (2000). Short-term benefit from oral vancomycin treatment of regressive-onset autism. Journal of Child Neurology, 15(7), 429–435.CrossRefPubMedGoogle Scholar
  41. Santocchi, E., Guiducci, L., Fulceri, F., Billeci, L., Buzzigoli, E., Apicella, F.,… Muratori, F. (2016). Gut to brain interaction in autism spectrum disorders: A randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry, 16, 183. doi: 10.1186/s12888-016-0887-5.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sekirov, I., Russell, S. L., Antunes, L. C., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90(3), 859–904. doi: 10.1152/physrev.00045.2009.CrossRefPubMedGoogle Scholar
  43. Selmer, T., & Andrei, P. I. (2001). p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. European Journal of Biochemistry, 268(5), 1363–1372.CrossRefPubMedGoogle Scholar
  44. Sheldon, A. L., & Robinson, M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochemistry International, 51(6–7), 333–355. doi: 10.1016/j.neuint.2007.03.012.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shimmura, C., Suda, S., Tsuchiya, K. J., Hashimoto, K., Ohno, K., Matsuzaki, H.,… Mori, N. (2011). Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PLoS One, 6(10), e25340. doi: 10.1371/journal.pone.0025340.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shultz, S. R., Macfabe, D. F., Martin, S., Jackson, J., Taylor, R., Boon, F.,… Cain, D. P. (2009). Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: Further development of a rodent model of autism. Behavioural Brain Research, 200(1), 33–41. doi: 10.1016/j.bbr.2008.12.023.CrossRefPubMedGoogle Scholar
  47. Shultz, S. R., MacFabe, D. F., Ossenkopp, K. P., Scratch, S., Whelan, J., Taylor, R., & Cain, D. P. (2008). Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: Implications for an animal model of autism. Neuropharmacology, 54(6), 901–911. doi: 10.1016/j.neuropharm.2008.01.013.CrossRefPubMedGoogle Scholar
  48. Song, Y., Liu, C., & Finegold, S. M. (2004). Real-time PCR quantitation of clostridia in feces of autistic children. Applied and Environmental Microbiology, 70(11), 6459–6465. doi: 10.1128/AEM.70.11.6459-6465.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Song, Y., Liu, C., Molitoris, D. R., Tomzynski, T. J., Lawson, P. A., Collins, M. D., & Finegold, S. M. (2003). Clostridium bolteae sp. nov., isolated from human sources. Systematic and Applied Microbiology, 26(1), 84–89. doi: 10.1078/072320203322337353.CrossRefPubMedGoogle Scholar
  50. Stefanatos, G. A. (2008). Regression in autistic spectrum disorders. Neuropsychology Review, 18(4), 305–319. doi: 10.1007/s11065-008-9073-y.CrossRefPubMedGoogle Scholar
  51. Taur, Y., Xavier, J. B., Lipuma, L., Ubeda, C., Goldberg, J., Gobourne, A.,… Pamer, E. G. (2012). Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 55(7), 905–914. doi: 10.1093/cid/cis580.CrossRefGoogle Scholar
  52. The University of Texas Health Science Center Houston,and National Institutes of Health. (2016). Road to discovery for combination probiotic BB-12 with LGG in treating autism spectrum disorder. https://ClinicalTrials.gov/show/NCT02674984.
  53. Thomas, R. H., Meeking, M. M., Mepham, J. R., Tichenoff, L., Possmayer, F., Liu, S., & MacFabe, D. F. (2012). The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: Further development of a rodent model of autism spectrum disorders. Journal of Neuroinflammation, 9, 153. doi: 10.1186/1742-2094-9-153.CrossRefPubMedPubMedCentralGoogle Scholar
  54. University Arizona State, University, Northern Arizona, Arizona, University of Clinical, University of Minnesota, and Institute, Translational Science. (2014). Beneficial bacteria treatment. https://ClinicalTrials.gov/show/NCT02504554.
  55. University of California, Davis. (2014). Effect of milk oligosaccharides and bifidobacteria on the intestinal microflora of children with autism. https://ClinicalTrials.gov/show/NCT02086110.
  56. van Duynhoven, J., Vaughan, E. E., Jacobs, D. M., Kemperman, R. A., van Velzen, E. J., Gross, G.,… Van de Wiele, T. (2011). Metabolic fate of polyphenols in the human superorganism. Proceedings of the National Academy of Sciences of the USA, 108(Suppl 1), 4531–4538. doi: 10.1073/pnas.1000098107.CrossRefPubMedGoogle Scholar
  57. Vanholder, R., De Smet, R., & Lesaffer, G. (1999). p-cresol: A toxin revealing many neglected but relevant aspects of uraemic toxicity. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association-European Renal Association, 14(12), 2813–2815.CrossRefGoogle Scholar
  58. Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., & Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57(1), 67–81. doi: 10.1002/ana.20315.CrossRefPubMedGoogle Scholar
  59. Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2011). Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Applied and Environmental Microbiology, 77(18), 6718–6721. doi: 10.1128/AEM.05212-11.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2012). Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Digestive Diseases and Sciences, 57(8), 2096–2102. doi: 10.1007/s10620-012-2167-7.CrossRefPubMedGoogle Scholar
  61. Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2013). Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Molecular Autism, 4(1), 42. doi: 10.1186/2040-2392-4-42.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wang, Y., & Kasper, L. H. (2014). The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity, 38C, 1–12. doi: 10.1016/j.bbi.2013.12.015.CrossRefGoogle Scholar
  63. West, P. R., Amaral, D. G., Bais, P., Smith, A. M., Egnash, L. A., Ross, M. E.,… Burrier, R. E. (2014). Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS One, 9(11), e112445. doi: 10.1371/journal.pone.0112445.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wetterstrand, K. A. (2013). DNA sequencing costs: Data from the NHGRI genome sequencing program (GSP). Retrieved from http://www.genome.gov/sequencingcosts. Accessed 20 Nov 2013.
  65. Williams, B. L., Hornig, M., Buie, T., Bauman, M. L., Cho Paik, M., Wick, I.,… Lipkin, W. I. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One, 6(9), e24585. doi: 10.1371/journal.pone.0024585.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Williams, B. L., Hornig, M., Parekh, T., & Lipkin, W. I. (2012). Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. MBio, 3(1). doi: 10.1128/mBio.00261-11.
  67. Wong, J. M., de Souza, R., Kendall, C. W., Emam, A., & Jenkins, D. J. (2006). Colonic health: Fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40(3), 235–243.CrossRefPubMedGoogle Scholar
  68. Yap, I. K., Angley, M., Veselkov, K. A., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2010). Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. Journal of Proteome Research, 9(6), 2996–3004. doi: 10.1021/pr901188e.CrossRefPubMedGoogle Scholar
  69. Yokoyama, M. T., & Carlson, J. R. (1981). Production of Skatole and para-Cresol by a Rumen Lactobacillus sp. Applied and Environmental Microbiology, 41(1), 71–76.PubMedPubMedCentralGoogle Scholar
  70. Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F.,… Gross, C. T. (2014). Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nature Neuroscience, 17(3), 400–406. doi: 10.1038/nn.3641.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PsychiatryWeill Cornell Medical CollegeNew YorkUSA
  2. 2.New York-Presbyterian HospitalWhite PlainsUSA
  3. 3.Department of Medicine, Infectious DiseaseMemorial Sloan Kettering Cancer CenterNew YorkUSA
  4. 4.Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations