Advertisement

Journal of Autism and Developmental Disorders

, Volume 46, Issue 9, pp 2831–2844 | Cite as

Validation of the Movie for the Assessment of Social Cognition in Adolescents with ASD: Fixation Duration and Pupil Dilation as Predictors of Performance

  • Nico MüllerEmail author
  • Sarah Baumeister
  • Isabel Dziobek
  • Tobias Banaschewski
  • Luise Poustka
Original Paper

Abstract

Impaired social cognition is one of the core characteristics of autism spectrum disorders (ASD). Appropriate measures of social cognition for high-functioning adolescents with ASD are, however, lacking. The Movie for the Assessment of Social Cognition (MASC) uses dynamic social stimuli, ensuring ecological validity, and has proven to be a sensitive measure in adulthood. In the current study, 33 adolescents with ASD and 23 controls were administered the MASC, while concurrent eye tracking was used to relate gaze behavior to performance levels. The ASD group exhibited reduced MASC scores, with social cognition performance being explained by shorter fixation duration on eyes and decreased pupil dilation. These potential diagnostic markers are discussed as indicators of different processing of social information in ASD.

Keywords

Autism spectrum disorder Eye-tracking Adolescence Pupil dilation Social cognition Ecological validity 

Notes

Acknowledgments

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under Grant Agreement No 115300, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in kind contribution. The current study is part of the first author’s doctoral dissertation. Parts of the results of the current study will be presented at the 9. Conference of the Society for Research in Autism Spectrum Conditions (WGAS) in Freiburg, Germany.

Author Contributions

NM conceived of the study, participated in the study's design and coordination, performed the measurement and statistical analysis, and drafted the manuscript. SB participated in its design and coordination, performed the measurement, and helped to draft the manuscript. ID participated in its design and helped to draft the manuscript. TB participated in its design and helped to draft the manuscript. LP conceived of the study, participated in its design and interpretation of the data, and helped to draft the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

Prof. Dr. Poustka received conference attendance support or was paid for public speaking by Lilly, Shire and Medice. She received research funding from EU, German Research Foundation (DFG), Federal Ministry of Education and Research (BMBF). Prof. Dr. Dr. Banaschewski served in an advisory or consultancy role for Actelion, Hexal Pharma, Lilly, Medice, Novartis, Oxford outcomes, PCM scientific, Shire and Viforpharma. He received conference support or speaker’s fee by Medice, Novartis and Shire. He is/has been involved in clinical trials conducted by Shire & Viforpharma. Their present work is unrelated to the above grants and relationships. Prof. Dr. Isabel Dziobek receives royalties for the Swedish version of the MASC from Hans Huber Publishers. Dr. Sarah Baumeister and Nico Müller declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10803_2016_2828_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3), 165–178.CrossRefPubMedGoogle Scholar
  2. Anderson, C. J., & Colombo, J. (2009). Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology, 51(2), 207–211.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson, C. J., Colombo, J., & Jill Shaddy, D. (2006). Visual scanning and pupillary responses in young children with autism spectrum disorder. Journal of Clinical and Experimental Neuropsychology, 28(7), 1238–1256.CrossRefPubMedGoogle Scholar
  4. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.CrossRefPubMedGoogle Scholar
  5. Auyeung, B., Allison, C., Wheelwright, S., & Baron-Cohen, S. (2012). Brief report: Development of the adolescent empathy and systemizing quotients. Journal of Autism and Developmental Disorders, 42(10), 2225–2235.CrossRefPubMedGoogle Scholar
  6. Baron-Cohen, S. (1995). Mindblindness: An essay on autism and theory of mind. Cambridge, MA: The MIT Press.Google Scholar
  7. Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in cognitive sciences, 6(6), 248–254.CrossRefPubMedGoogle Scholar
  8. Baron-Cohen, S., Bowen, D. C., Holt, R. J., Allison, C., Auyeung, B., Lombardo, M. V., et al. (2015). The “Reading the Mind in the Eyes” test: Complete absence of typical Sex difference in ~400 men and women with Autism. PLoS One, 10(8), e0136521.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 37–46.CrossRefPubMedGoogle Scholar
  10. Baron-Cohen, S., & Wheelwright, S. (2004). The empathy quotient: An investigation of adults with Asperger syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental Disorders, 34(2), 163–175.CrossRefPubMedGoogle Scholar
  11. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001a). The “Reading the Mind in the Eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, 42(2), 241–251. doi: 10.1111/1469-7610.00715.CrossRefPubMedGoogle Scholar
  12. Baron-Cohen, S., Wheelwright, S., Spong, A., Scahill, V., & Lawson, J. (2001b). Are intuitive physics and intuitive psychology independent? A test with children with Asperger Syndrome. Journal of Developmental and Learning Disorders, 5(1), 47–78.Google Scholar
  13. Baumeister, R. F., & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117(3), 497–529. doi: 10.1037/0033-2909.117.3.497.CrossRefPubMedGoogle Scholar
  14. Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. Handbook of Psychophysiology, 2, 142–162.Google Scholar
  15. Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014). Pupillometry reveals a mechanism for the Autism Spectrum Disorder (ASD) advantage in visual tasks. Scientific Reports, 4, 4301.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bölte, S., Poustka, F., & Constantino, J. N. (2008). Assessing autistic traits: Cross-cultural validation of the social responsiveness scale (SRS). Autism Research, 1(6), 354–363. doi: 10.1002/aur.49.CrossRefPubMedGoogle Scholar
  17. Bölte, S., Rühl, D., Schmötzer, G., & Poustka, F. (2006). Diagnostisches Interview für Autismus—Revidiert. Deutsche Fassung des Autism Diagnostic Interview—Revised von Michael Rutter. Ann LeCouteur und Catherine Lord. Verlag Hans Huber: Bern.Google Scholar
  18. Brent, E., Rios, P., Happé, F., & Charman, T. (2004). Performance of children with autism spectrum disorder on advanced theory of mind tasks. Autism, 8, 283–299. doi: 10.1177/1362361304045217.CrossRefPubMedGoogle Scholar
  19. Campbell, D. J., Shic, F., Macari, S., & Chawarska, K. (2014). Gaze response to dyadic bids at 2 years related to outcomes at 3 years in autism spectrum disorders: A subtyping analysis. Journal of Autism and Developmental Disorders, 44(2), 431–442. doi: 10.1007/s10803-013-1885-9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chawarska, K., Macari, S., & Shic, F. (2013). Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biological Psychiatry, 74(3), 195–203.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., & Schultz, R. T. (2012). The social motivation theory of autism. Trends in cognitive sciences, 16(4), 231–239.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chevallier, C., Parish-Morris, J., McVey, A., Rump, K. M., Sasson, N. J., Herrington, J. D., & Schultz, R. T. (2015). Measuring social attention and motivation in autism spectrum disorder using eye-tracking: Stimulus type matters. Autism Research, 8(5), 620–628. doi: 10.1002/aur.1479.CrossRefPubMedGoogle Scholar
  23. Chita-Tegmark, M. (2016). Social attention in ASD: A review and meta-analysis of eye-tracking studies. Research in Developmental Disabilities, 48, 79–93. doi: 10.1016/j.ridd.2015.10.011.CrossRefPubMedGoogle Scholar
  24. Chuleva, S., Clausen, H.-J., & Körner, J. (2009). Anwendung des MASC, eines neuen Instrumentes zur Erfassung sozialkognitiver Kompetenzen bei Jugendlichen. Praxis der Kinderpsychologie und Kinderpsychiatrie, 58(8), 635–654.CrossRefPubMedGoogle Scholar
  25. Constantino, J. N., & Gruber, C. P. (2005). Social Responsiveness Scale. Los Angeles: Western Psychological Services.Google Scholar
  26. Constantino, J. N., & Gruber, C. P. (2007). Social Responsiveness Scale (SRS-2) (Vol. 2). Los Angeles: Western Psychological Services.Google Scholar
  27. Dalton, K. M., Nacewicz, B. M., Johnstone, T., Schaefer, H. S., Gernsbacher, M. A., Goldsmith, H., & Davidson, R. J. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8(4), 519–526.PubMedPubMedCentralGoogle Scholar
  28. de Urabain, I. R. S., Johnson, M. H., & Smith, T. J. (2014). GraFIX: A semiautomatic approach for parsing low-and high-quality eye-tracking data. Behavior research methods, 47(1), 53–72.CrossRefGoogle Scholar
  29. Dziobek, I., Fleck, S., Kalbe, E., Rogers, K., Hassenstab, J., Brand, M., et al. (2006). Introducing MASC: A Movie for the Assessment of Social Cognition. Journal of Autism and Developmental Disorders, 36, 623–636. doi: 10.1007/s10803-006-0107-0.CrossRefPubMedGoogle Scholar
  30. Elison, J. T., Paterson, S. J., Wolff, J. J., Reznick, J. S., Sasson, N. J., Gu, H., et al. (2013). White matter microstructure and atypical visual orienting in 7-month-olds at risk for autism. American Journal of Psychiatry, 170(8), 899–908.CrossRefPubMedGoogle Scholar
  31. Elsabbagh, M., Gliga, T., Pickles, A., Hudry, K., Charman, T., Johnson, M. H., & Team, B. (2013). The development of face orienting mechanisms in infants at-risk for autism. Behavioural Brain Research, 251, 147–154.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Falck-Ytter, T. (2008). Face inversion effects in autism: A combined looking time and pupillometric study. Autism Research, 1(5), 297–306.CrossRefPubMedGoogle Scholar
  33. Falck-Ytter, T., Bölte, S., & Gredebäck, G. (2013a). Eye tracking in early autism research. Journal of Neurodevelopmental Disorders, 5(1), 28.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Falck-Ytter, T., von Hofsten, C., Gillberg, C., & Fernell, E. (2013b). Visualization and analysis of eye movement data from children with typical and atypical development. Journal of Autism and Developmental Disorders, 43(10), 2249–2258. doi: 10.1007/s10803-013-1776-0.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fiske, S. T., & Taylor, S. E. (2013). Social cognition: From brains to culture. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  36. Fleck, S., Dziobek, I., Rogers, K., Mielke, R., Kalbe, E., & Kessler, J. (2006). Der MASC-MC, ein neues filmisches Verfahren zur Erfassung der “Theory of Mind”. Zeigen Patienten mit Asperger-Syndrom ein spezifisches Antwortmuster? Der Nervenarzt, 77, 343.CrossRefGoogle Scholar
  37. Fletcher, T. D. (2010). Psychometric: Applied Psychometric Theory. R package version 2.2. Retrieved from http://CRAN.R-project.org/package=psychometric.
  38. Fletcher, T. D. (2012). QuantPsyc: Quantitative Psychology Tools. R package version 1.5.Google Scholar
  39. Fletcher-Watson, S., Leekam, S. R., Benson, V., Frank, M., & Findlay, J. (2009). Eye-movements reveal attention to social information in autism spectrum disorder. Neuropsychologia, 47(1), 248–257.CrossRefPubMedGoogle Scholar
  40. Fox, J., & Weisberg, S. (2011). An R companion to applied regression. Thousand Oaks, CA: Sage.Google Scholar
  41. Freeth, M., Chapman, P., Ropar, D., & Mitchell, P. (2010). Do gaze cues in complex scenes capture and direct the attention of high functioning adolescents with ASD? Evidence from eye-tracking. Journal of Autism and Developmental Disorders, 40(5), 534–547.CrossRefPubMedGoogle Scholar
  42. Frith, C. D., & Frith, U. (2008). Implicit and explicit processes in social cognition. Neuron, 60(3), 503–510.CrossRefPubMedGoogle Scholar
  43. Goodman, R. (1997). The Strengths and Difficulties Questionnaire: A research note. Journal of Child Psychology and Psychiatry, 38(5), 581–586.CrossRefPubMedGoogle Scholar
  44. Guillon, Q., Hadjikhani, N., Baduel, S., & Roge, B. (2014). Visual social attention in autism spectrum disorder: Insights from eye tracking studies. Neuroscience and Biobehavioral Reviews, 42, 279–297. doi: 10.1016/j.neubiorev.2014.03.013.CrossRefPubMedGoogle Scholar
  45. Hanley, M., McPhillips, M., Mulhern, G., & Riby, D. M. (2013). Spontaneous attention to faces in Asperger syndrome using ecologically valid static stimuli. Autism, 17(6), 754–761.CrossRefPubMedGoogle Scholar
  46. Harms, M. B., Martin, A., & Wallace, G. L. (2010). Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychology Review, 20(3), 290–322.CrossRefPubMedGoogle Scholar
  47. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203. doi: 10.1038/35058500.CrossRefPubMedGoogle Scholar
  48. Jemel, B., Mottron, L., & Dawson, M. (2006). Impaired Face Processing in Autism: Fact or Artifact? Journal of Autism and Developmental Disorders, 36(1), 91–106. doi: 10.1007/s10803-005-0050-5.CrossRefPubMedGoogle Scholar
  49. Jones, W., Carr, K., & Klin, A. (2008). Absence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorder. Archives of General Psychiatry, 65(8), 946–954. doi: 10.1001/archpsyc.65.8.946.CrossRefPubMedGoogle Scholar
  50. Kliemann, D., Dziobek, I., Hatri, A., Steimke, R., & Heekeren, H. R. (2010). Atypical reflexive gaze patterns on emotional faces in autism spectrum disorders. The Journal of Neuroscience, 30(37), 12281–12287.CrossRefPubMedGoogle Scholar
  51. Klin, A., Jones, W., Schultz, R., & Volkmar, F. (2003). The enactive mind, or from actions to cognition: Lessons from autism. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 358(1430), 345–360. doi: 10.1098/rstb.2002.1202.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry, 59(9), 809–816. doi: 10.1001/archpsyc.59.9.809.CrossRefPubMedGoogle Scholar
  53. Klin, A., Lin, D. J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 459(7244), 257–261. doi: 10.1038/nature07868.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Krach, S., Kamp-Becker, I., Einhäuser, W., Sommer, J., Frässle, S., Jansen, A., et al. (2015). Evidence from pupillometry and fMRI indicates reduced neural response during vicarious social pain but not physical pain in autism. Human Brain Mapping, 36(11), 4730–4744. doi: 10.1002/hbm.22949.CrossRefPubMedGoogle Scholar
  55. Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry a window to the preconscious? Perspectives on psychological science, 7(1), 18–27.CrossRefPubMedGoogle Scholar
  56. Lahera, G., Boada, L., Pousa, E., Mirapeix, I., Moron-Nozaleda, G., Marinas, L., et al. (2014). Movie for the Assessment of Social Cognition (MASC): Spanish validation. Journal of Autism and Developmental Disorders, 44(8), 1886–1896. doi: 10.1007/s10803-014-2061-6.CrossRefPubMedGoogle Scholar
  57. Lord, F. M. (1952). The relation of the reliability of multiple-choice tests to the distribution of item difficulties. Psychometrika, 17(2), 181–194.CrossRefGoogle Scholar
  58. Lord, C., Risi, S., Lambrecht, L., Cook, E. H, Jr., Leventhal, B. L., DiLavore, P. C., et al. (2000). The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.CrossRefPubMedGoogle Scholar
  59. Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. L. (2012). Autism diagnostic observation schedule: ADOS-2. Los Angeles: Western Psychological Services.Google Scholar
  60. Loth, E., Spooren, W., Ham, L. M., Isaac, M. B., Auriche-Benichou, C., Banaschewski, T., et al. (2016). Identification and validation of biomarkers for autism spectrum disorders. Nature Reviews Drug Discovery, 15(1), 70–73. doi: 10.1038/nrd.2015.7.CrossRefPubMedGoogle Scholar
  61. Martineau, J., Hernandez, N., Hiebel, L., Roché, L., Metzger, A., & Bonnet-Brilhault, F. (2011). Can pupil size and pupil responses during visual scanning contribute to the diagnosis of autism spectrum disorder in children? Journal of Psychiatric Research, 45(8), 1077–1082.CrossRefPubMedGoogle Scholar
  62. Montag, C., Ehrlich, A., Neuhaus, K., Dziobek, I., Heekeren, H. R., Heinz, A., & Gallinat, J. (2010). Theory of mind impairments in euthymic bipolar patients. Journal of Affective Disorders, 123(1), 264–269.CrossRefPubMedGoogle Scholar
  63. Murphy, D., & Spooren, W. (2012). EU-AIMS: A boost to autism research. Nature Reviews Drug Discovery, 11(11), 815.CrossRefPubMedGoogle Scholar
  64. Nuske, H. J., Vivanti, G., Hudry, K., & Dissanayake, C. (2014). Pupillometry reveals reduced unconscious emotional reactivity in autism. Biological Psychology, 101, 24–35.CrossRefPubMedGoogle Scholar
  65. Petermann, U., & Petermann, F. (2011). WISC-IV: Wechsler Intelligence Scale for Children-: Deutschsprachige Adaptation nach D Wechsler. Amsterdam: Pearson Assessment and Information.Google Scholar
  66. Pierce, K., Conant, D., Hazin, R., Stoner, R., & Desmond, J. (2011). Preference for geometric patterns early in life as a risk factor for autism. Archives of General Psychiatry, 68(1), 101–109. doi: 10.1001/archgenpsychiatry.2010.113.CrossRefPubMedGoogle Scholar
  67. Poustka, L., Rehm, A., Holtmann, M., Bock, M., Böhmert, C., & Dziobek, I. (2010). Dissoziation von kognitiver und affektiver Empathie bei Jugendlichen mit Autismus-Spektrum-Störungen. Kindheit und Entwicklung., 19, 177–183.CrossRefGoogle Scholar
  68. Preißler, S., Dziobek, I., Ritter, K., Heekeren, H. R., & Roepke, S. (2010). Social cognition in borderline personality disorder: Evidence for disturbed recognition of the emotions, thoughts, and intentions of others. Frontiers in behavioral neuroscience, 4(182), 1–8.Google Scholar
  69. Prifitera, A., Saklofske, D. H., & Weiss, L. G. (2005). WISC-4 clinical use and interpretation. Burlington, MA: Elsevier Academic Press.Google Scholar
  70. R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://cran.r-project.org/doc/FAQ/R-FAQ.html.
  71. Raiford, S., Weiss, L., Rolfhus, E., & Coalson, D. (2005). WISC-IV technical report# 4: General Ability Index. Upper Saddle River, NJ: Pearson Education Inc.Google Scholar
  72. Revelle, W. (2015). Psych: Procedures for personality and psychological research. Evanston, Illinois: Northwestern University.Google Scholar
  73. Rice, K., Moriuchi, J. M., Jones, W., & Klin, A. (2012). Parsing heterogeneity in autism spectrum disorders: Visual scanning of dynamic social scenes in school-aged children. Journal of the American Academy of Child and Adolescent Psychiatry, 51(3), 238–248.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Risko, E. F., Laidlaw, K. E., Freeth, M., Foulsham, T., & Kingstone, A. (2012). Social attention with real versus reel stimuli: Toward an empirical approach to concerns about ecological validity. Frontiers in Human Neuroscience, 6, 143.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ritter, K., Dziobek, I., Preißler, S., Rüter, A., Vater, A., Fydrich, T., et al. (2011). Lack of empathy in patients with narcissistic personality disorder. Psychiatry Research, 187(1), 241–247.CrossRefPubMedGoogle Scholar
  76. Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., & Müller, M. (2011). pROC: An open-source package for R and S + to analyze and compare ROC curves. (Vol. 12).Google Scholar
  77. Rühl, D., Bölte, S., Feineis-Matthews, S., & Poustka, F. (2004). Diagnostische Beobachtungsskala für Autistische Störungen (ADOS). Bern: Verlag Hans Huber.Google Scholar
  78. Rutter, M., Le Couteur, A., Lord, C., & Faggioli, R. (2005). ADI-R: Autism diagnostic interview–revised: Manual. Los Angeles: Western Psychological Services.Google Scholar
  79. Samson, A. C., & Huber, O. W. (2010). Short German versions of empathizing and systemizing self-assessment scales. Swiss Journal of Psychology, 69, 239–244. doi: 10.1024/1421-0185/a000028.CrossRefGoogle Scholar
  80. Samuels, E., & Szabadi, E. (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part I: Principles of functional organisation. Current Neuropharmacology, 6(3), 235.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Senju, A. (2013). Atypical development of spontaneous social cognition in autism spectrum disorders. Brain and Development, 35(2), 96–101.CrossRefPubMedGoogle Scholar
  82. Senju, A., Southgate, V., White, S., & Frit, U. (2009). Mindblind eyes: An absence of spontaneous theory of mind in Asperger syndrome. Science, 325, 883–885. doi: 10.1126/science.1176170.CrossRefPubMedGoogle Scholar
  83. Speer, L. L., Cook, A. E., McMahon, W. M., & Clark, E. (2007). Face processing in children with autism: Effects of stimulus contents and type. Autism, 11(3), 265–277. doi: 10.1177/1362361307076925.CrossRefPubMedGoogle Scholar
  84. Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychology Review, 8(3), 220–247.CrossRefPubMedGoogle Scholar
  85. Symeonidou, I., Dumontheil, I., Chow, W.-Y., & Breheny, R. (2015). Development of online use of theory of mind during adolescence: An eye-tracking study. Journal of Experimental Child Psychology,. doi: 10.1016/j.jecp.2015.11.007.PubMedGoogle Scholar
  86. Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics. Boston, MA: Allyn and Bacon.Google Scholar
  87. Thompson, B. (2007). Effect sizes, confidence intervals, and confidence intervals for effect sizes. Psychology in the Schools, 44(5), 423–432.CrossRefGoogle Scholar
  88. Tobii Technology. (2012). User manual–Tobii Studio. Manual Version 3.2 Rev A. 11/2012: Tobii Technology AB.Google Scholar
  89. Torchiano, M. (2015). Effsize: Efficient Effect Size Computation. R package version 0.5.4.Google Scholar
  90. Tseng, P.-H., Cameron, I. G., Pari, G., Reynolds, J. N., Munoz, D. P., & Itti, L. (2013). High-throughput classification of clinical populations from natural viewing eye movements. Journal of Neurology, 260(1), 275–284.CrossRefPubMedGoogle Scholar
  91. van der Geest, J. N., Kemner, C., Verbaten, M. N., & van Engeland, H. (2002). Gaze behavior of children with pervasive developmental disorder toward human faces: A fixation time study. Journal of Child Psychology and Psychiatry, 43(5), 669–678. doi: 10.1111/1469-7610.00055.CrossRefPubMedGoogle Scholar
  92. Wang, S., Jiang, M., Duchesne, Xavier M., Laugeson, Elizabeth A., Kennedy, Daniel P., Adolphs, R., et al. (2015). Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking. Neuron, 88(3), 604–616. doi: 10.1016/j.neuron.2015.09.042.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wass, S. V., Jones, E. J., Gliga, T., Smith, T. J., Charman, T., & Johnson, M. H. (2015). Shorter spontaneous fixation durations in infants with later emerging autism. Scientific Reports, 5, 8284.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Watson, A. C., Nixon, C. L., Wilson, A., & Capage, L. (1999). Social interaction skills and theory of mind in young children. Developmental Psychology, 35(2), 386–391. doi: 10.1037/0012-1649.35.2.386.CrossRefPubMedGoogle Scholar
  95. Wechsler, D. (2004). The Wechsler intelligence scale for children-fourth edition. London: Pearson Assessment.Google Scholar
  96. Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-analysis of theory-of-mind development: the truth about false belief. Child Development, 72(3), 655–684.CrossRefPubMedGoogle Scholar
  97. Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13(1), 103–128. doi: 10.1016/0010-0277(83)90004-5.CrossRefPubMedGoogle Scholar
  98. Woerner, W., Becker, A., Friedrich, C., Rothenberger, A., Klasen, H., & Goodman, R. (2002). Normierung und Evaluation der deutschen Elternversion des Strengths and Difficulties Questionnaire (SDQ): Ergebnisse einer repräsentativen Felderhebung. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 30(2), 105–112. doi: 10.1024//1422-4917.30.2.105.CrossRefPubMedGoogle Scholar
  99. Yi, L., Fan, Y., Quinn, P. C., Feng, C., Huang, D., Li, J., & Lee, K. (2013). Abnormality in face scanning by children with autism spectrum disorder is limited to the eye region: Evidence from multi-method analyses of eye tracking data. Journal of vision, 13(10), 5.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Yu, C., Yurovsky, D., & Xu, T. (2012). Visual data mining: An exploratory approach to analyzing temporal patterns of eye movements. Infancy, 17(1), 33–60. doi: 10.1111/j.1532-7078.2011.00095.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nico Müller
    • 1
    Email author
  • Sarah Baumeister
    • 1
  • Isabel Dziobek
    • 2
  • Tobias Banaschewski
    • 1
  • Luise Poustka
    • 1
    • 3
  1. 1.Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental HealthHeidelberg UniversityMannheimGermany
  2. 2.Berlin School of Mind and Brain and Institute of PsychologyHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Department of Child and Adolescent PsychiatryMedical University of ViennaViennaAustria

Personalised recommendations