Journal of Autism and Developmental Disorders

, Volume 46, Issue 6, pp 2199–2210 | Cite as

Electrophysiological Evidence of Atypical Spatial Attention in Those with a High Level of Self-reported Autistic Traits

  • Stephanie A. Dunn
  • Megan Freeth
  • Elizabeth Milne
Original Paper

Abstract

Selective attention is atypical in individuals with autism spectrum conditions. Evidence suggests this is also the case for those with high levels of autistic traits. Here we investigated the neural basis of spatial attention in those with high and low levels of self-reported autistic traits via analysis of ERP deflections associated with covert attention, target selection and distractor suppression (the N2pc, NT and PD). Larger N2pc and smaller PD amplitude was observed in those with high levels of autistic traits. These data provide neural evidence for differences in spatial attention, specifically, reduced distractor suppression in those with high levels of autistic traits, and may provide insight into the experience of perceptual overload often reported by individuals on the autism spectrum.

Keywords

Autistic traits ERP Selective attention Spatial attention N2pc 

References

  1. Adams, N. C., & Jarrold, C. (2012). Inhibition in Autism: Children with Autism have difficulty inhibiting irrelevant distractors but not prepotent responses. Journal of Autism and Developmental Disorders, 42, 1052–1063.CrossRefPubMedGoogle Scholar
  2. Almeida, R. A., Dickinson, J. E., Maybery, M. T., Badcock, J. C., & Badcock, D. R. (2010). Visual search performance in the autism spectrum II: The radial frequency search task with additional segmentation cues. Neuropsychologia, 48, 4117–4124.CrossRefPubMedGoogle Scholar
  3. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31, 5–17.CrossRefPubMedGoogle Scholar
  4. Bayliss, A. P., & Kritikos, A. (2011). Brief report: Perceptual load and the autism spectrum in typically developed individuals. Journal of Autism and Developmental Disorders, 41, 1573–1578.CrossRefPubMedGoogle Scholar
  5. Brock, J., Xu, J. Y., & Brooks, K. R. (2011). Individual differences in visual search: Relationship to autistic traits, discrimination thresholds, and speed of processing. Perception, 40, 739–742.CrossRefPubMedGoogle Scholar
  6. Burack, J. A. (1994). Selective attention deficits in persons with autism: Preliminary evidence of an inefficient attentional lens. Journal of Abnormal Psychology, 103, 535–543.CrossRefPubMedGoogle Scholar
  7. Cespón, J., Galdo-Álvarez, S., & Díaz, F. (2012). The Simon effect modulates N2cc and LRP but not the N2pc component. International Journal of Psychophysiology, 84, 120–129.CrossRefPubMedGoogle Scholar
  8. Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  9. Constantino, J. N., & Todd, R. D. (2003). Autistic traits in the general population: A twin study. Archives of General Psychiatry, 60, 524–530.CrossRefPubMedGoogle Scholar
  10. Corriveau, I., Fortier-Gauthier, U., Pomerleau, V. J., McDonald, J., Dell'Acqua, R., & Jolicoeur, P. (2012). Electrophysiological evidence of multitasking impairment of attentional deployment reflects target-specific processing, not distractor inhibition. International Journal of Psychophysiology, 86(2), 152–159.CrossRefPubMedGoogle Scholar
  11. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.CrossRefPubMedGoogle Scholar
  12. Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234.CrossRefPubMedGoogle Scholar
  13. Eimer, M., & Kiss, M. (2010). An electrophysiological measure of access to representations in visual working memory. Psychophysiology, 47, 197–200.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gregory, B. L., & Plaisted-Grant, K. C. (2013). The autism-spectrum quotient and visual search: Shallow and deep autistic endophenotypes. Journal of autism and developmental disorders, 1-10.Google Scholar
  15. Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21, 760–775.CrossRefPubMedGoogle Scholar
  16. Hoekstra, R. A., Bartels, M., Cath, D. C., & Boomsma, D. I. (2008). Factor structure, reliability and criterion validity of the autism-spectrum quotient (AQ): A study in Dutch population and patient groups. Journal of Autism and Developmental Disorders, 28, 1555–1566.CrossRefGoogle Scholar
  17. Hopf, J. M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., & Heinze, H.-J. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10, 1233–1241.CrossRefPubMedGoogle Scholar
  18. Jolicoeur, P., Brisson, B., & Robitaille, N. (2008). Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task. Brain Research, 1215, 160–172.CrossRefPubMedGoogle Scholar
  19. Kiesel, A., Miller, J., Jolicoeur, P., & Brisson, B. (2008). Measurement of ERP latency differences: A comparison of single participant and jackknife based scoring methods. Psychophysiology, 45(2), 250–274.CrossRefPubMedGoogle Scholar
  20. Kiss, M., Van Velzen, J., & Eimer, M. (2008). The N2pc component and its links to attention shifts and spatially selective visual processing. Psychophysiology, 45, 240–249.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA; London: MIT.Google Scholar
  22. Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33, 64–87.CrossRefPubMedGoogle Scholar
  23. Luck, S. J., & Hillyard, S. A. (1990). Electrophysiological evidence for parallel and serial processing during visual search. Perception and Psychophysics, 48, 603–617.CrossRefPubMedGoogle Scholar
  24. Luck, S. J., & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291–308.CrossRefPubMedGoogle Scholar
  25. Luck, S. J., & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000–1014.PubMedGoogle Scholar
  26. Luck, S. J., & Kappenman, E. S. (2013). ERP components and selective attention. In S. J. Luck & E. S. Kappenman (Eds.), The Oxford handbook of event related potential components (pp. 295–323). New York: Oxford University Press.Google Scholar
  27. Luck, S. J., Kappenman, E. S., Fuller, R. L., Robinson, B., Summerfelt, A., & Gold, J. M. (2009). Impaired response selection in schizophrenia: Evidence from the P3 wave and lateralized readiness potential. Psychophysiology, 46, 776–786.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mann, T. A., & Walker, P. (2003). Autism and a deficit in broadening the spread of visual attention. Journal of Child Psychology and Psychiatry, 44, 274–284.CrossRefPubMedGoogle Scholar
  29. Miller, J., Patterson, T., & Ulrich, R. (1998). Jackknife-based method for measuring LRP onset latency differences. Psychophysiology, 35(1), 99–115.CrossRefPubMedGoogle Scholar
  30. Milne, E., Dunn, S. A., Freeth, M., & Rosas-Martinez, L. (2013). Visual search performance is predicted by the degree to which selective attention to features modulates the ERP between 350 and 600ms. Neuropsychologia, 51, 1109–1118.CrossRefPubMedGoogle Scholar
  31. Plaisted, K., O’Riordan, M., & Baron-Cohen, S. (1998). Enhanced visual search for a conjunctive target in autism: A research note. Journal of Child Psychology and Psychiatry and Allied Disciplines, 39, 777–783.CrossRefGoogle Scholar
  32. Rach, S., Diederich, A., & Colonius, H. (2011). On quantifying multisensory interaction effects in reaction time and detection rate. Psychological Research, 75, 77–94.CrossRefPubMedGoogle Scholar
  33. Remington, A., Swettenham, J., Campbell, R., & Coleman, M. (2009). Selective attention and perceptual load in autism spectrum disorder. Psychological Science, 20, 1388–1393.CrossRefPubMedGoogle Scholar
  34. Remington, A. M., Swettenham, J. G., & Lavie, N. (2012). Lightening the load: Perceptual load impairs visual detection in typical adults but not in autism. Journal of Abnormal Psychology, 121, 544–551.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72(6), 1455–1470.CrossRefGoogle Scholar
  36. Sawaki, R., Luck, S. J., & Raymond, J. E. (2015). How attention changes in response to incentives. Journal of Cognitive Neuroscience, 27(11), 2229–2239.CrossRefPubMedGoogle Scholar
  37. Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867–869.CrossRefPubMedGoogle Scholar
  38. Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29, 121–138.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stephanie A. Dunn
    • 1
  • Megan Freeth
    • 1
  • Elizabeth Milne
    • 1
  1. 1.Department of PsychologyThe University of SheffieldWestern Bank, SheffieldUK

Personalised recommendations